@article {536, title = {Functional Importance of a Proteoglycan Co-Receptor in Pathologic Lymphangiogenesis}, journal = {Circulation Research}, volume = {119}, year = {2016}, month = {05/2016}, pages = {210-221}, abstract = {Rationale: Lymphatic vessel growth is mediated by major pro-lymphangiogenic factors such as VEGF-C and -D, among other endothelial effectors. Heparan sulfate is a linear polysaccharide expressed on proteoglycan core proteins on cell-membranes and matrix, playing roles in angiogenesis, although little is known regarding any function(s) in lymphatic remodeling in vivo. Objective: To explore the genetic basis and mechanisms whereby heparan sulfate proteoglycans mediate pathologic lymphatic remodeling. Methods and Results: Lymphatic endothelial deficiency in the major heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1; involved in glycan-chain sulfation) was associated with reduced lymphangiogenesis in pathologic models, including spontaneous neoplasia. Mouse mutants demonstrated tumor-associated lymphatic vessels with apoptotic nuclei. Mutant lymphatic endothelia demonstrated impaired mitogen (Erk) and survival (Akt) pathway signaling as well as reduced VEGF-C mediated protection from starvation-induced apoptosis. Lymphatic endothelial specific Ndst1 deficiency (in Ndst1f/fProx1+/CreERT2 mice) was sufficient to inhibit VEGF-C dependent lymphangiogenesis. Lymphatic heparan sulfate deficiency reduced phosphorylation of the major lymphatic growth receptor VEGFR-3 in response to multiple VEGF-C species. Syndecan-4 was the dominantly expressed heparan sulfate proteoglycan in mouse lymphatic endothelia, and pathologic lymphangiogenesis was impaired in Sdc4(-/-) mice. On the lymphatic cell surface, VEGF-C induced robust association between syndecan-4 and VEGFR-3 which was sensitive to glycan disruption. Moreover, VEGFR-3 mitogen and survival signaling was reduced in the setting of Ndst1 or Sdc4 deficiency. Conclusions: These findings demonstrate the genetic importance of heparan sulfate and the major lymphatic proteoglycan syndecan-4 in pathologic lymphatic remodeling. This may introduce novel future strategies to alter pathologic lymphatic-vascular remodeling.}, doi = {10.1161/CIRCRESAHA.116.308504}, url = {http://circres.ahajournals.org/content/early/2016/05/25/CIRCRESAHA.116.308504} }