@article {39, title = {Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development}, journal = {Genes Dev}, volume = {24}, year = {2010}, month = {2010/May/}, pages = {875 - 80}, abstract = {The Claudin-like protein of 24 kDa (CLP24) is a hypoxia-regulated transmembrane protein of unknown function. We show here that clp24 knockdown in Danio rerio and Xenopus laevis results in defective lymphatic development. Targeted disruption of Clp24 in mice led to enlarged lymphatic vessels having an abnormal smooth muscle cell coating. We also show that the Clp24(-/-) phenotype was further aggravated in the Vegfr2(+/LacZ) or Vegfr3(+/LacZ) backgrounds and that CLP24 interacts with vascular endothelial growth factor receptor-2 (VEGFR-2) and VEGFR-3 and attenuates the transcription factor CREB phosphorylation via these receptors. Our results indicate that CLP24 is a novel regulator of VEGFR-2 and VEGFR-3 signaling pathways and of normal lymphatic vessel structure.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/20439428}, author = {Saharinen, Pipsa and Helotera, Hanna and Miettinen, Juho and Norrmen, Camilla and D{\textquoteright}Amico, Gabriela and Jeltsch, Michael and Langenberg, Tobias and Vandevelde, Wouter and Ny, Annelii and Dewerchin, Mieke and Carmeliet, Peter and Alitalo, Kari} } @article {36, title = {Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium}, journal = {Arterioscler Thromb Vasc Biol}, volume = {28}, year = {2008}, month = {2008/Sep/}, pages = {1614 - 20}, abstract = {OBJECTIVE: The endogenous role of the VEGF family member vascular endothelial growth factor-B (VEGF-B) in pathological angiogenesis remains unclear. METHODS AND RESULTS: We studied the role of VEGF-B in various models of pathological angiogenesis using mice lacking VEGF-B (VEGF-B(-/-)) or overexpressing VEGF-B(167). After occlusion of the left coronary artery, VEGF-B deficiency impaired vessel growth in the ischemic myocardium whereas, in wild-type mice, VEGF-B(167) overexpression enhanced revascularization of the infarct and ischemic border zone. By contrast, VEGF-B deficiency did not affect vessel growth in the wounded skin, hypoxic lung, ischemic retina, or ischemic limb. Moreover, VEGF-B(167) overexpression failed to enhance vascular growth in the skin or ischemic limb. CONCLUSIONS: VEGF-B appears to have a relatively restricted angiogenic activity in the ischemic heart. These insights might offer novel therapeutic opportunities.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/18511699}, author = {Li, Xuri and Tjwa, Marc and Van Hove, Inge and Enholm, Berndt and Neven, Elke and Paavonen, Karri and Jeltsch, Michael and Juan, Toni Diez and Sievers, Richard E and Chorianopoulos, Emmanuel and Wada, Hiromichi and Vanwildemeersch, Maarten and Noel, Agnes and Foidart, Jean-Michel and Springer, Matthew L and von Degenfeld, Georges and Dewerchin, Mieke and Blau, Helen M and Alitalo, Kari and Eriksson, Ulf and Carmeliet, Peter and Moons, Lieve} }