@article {427, title = {Critical role of VEGF-C/VEGFR-3 signaling in innate and adaptive immune responses in experimental obliterative bronchiolitis.}, journal = {Am J Pathol}, volume = {181}, year = {2012}, month = {2012 Nov}, pages = {1607-20}, abstract = {

Chronic inflammation, a hallmark of obliterative bronchiolitis, is known to induce lymphangiogenesis. We therefore studied the role of lymphangiogenic vascular endothelial growth factor C (VEGF-C), its receptor VEGFR-3, and lymphangiogenesis during development of experimental obliterative bronchiolitis [ie, obliterative airway disease (OAD)] in rat tracheal allografts. The functional importance of VEGF-C was investigated by adenovirus-mediated overexpression of VEGF-C (AdVEGF-C), and by inhibition of VEGF-C activity with VEGFR-3-Ig (AdVEGFR-3-Ig). Analyses included histology, immunohistochemistry, and real-time RT-PCR 10 and 30 days after transplantation. In the course of OAD development, lymphangiogenesis was induced in the airway wall during the alloimmune response, which was reversed by cyclosporine A in a dose-dependent fashion. VEGF-C overexpression in tracheal allografts induced epithelial activation, neutrophil chemotaxis, and a shift toward a Th17 adaptive immune response, followed by enhanced lymphangiogenesis and the development of OAD. In contrast, inhibition of VEGF-C activity with VEGFR-3-Ig inhibited lymphangiogenesis and angiogenesis and reduced infiltration of CD4(+) T cells and the development of OAD. Lymphangiogenesis was linked to T-cell responses during the development of OAD, and VEGF-C/VEGFR-3 signaling modulated innate and adaptive immune responses in the development of OAD in rat tracheal allografts. Our results thus suggest VEGFR-3-signaling as a novel strategy to regulate T-cell responses in the development of obliterative bronchiolitis after lung transplantation.

}, issn = {1525-2191}, doi = {10.1016/j.ajpath.2012.07.021} } @article {45, title = {Structural determinants of vascular endothelial growth factor-D receptor binding and specificity}, journal = {Blood}, volume = {117}, year = {2011}, month = {2011/Feb/}, pages = {1507 - 15}, abstract = {Vascular endothelial growth factors (VEGFs) and their tyrosine kinase receptors (VEGFR-1-3) are central mediators of angiogenesis and lymphangiogenesis. VEGFR-3 ligands VEGF-C and VEGF-D are produced as precursor proteins with long N- and C-terminal propeptides and show enhanced VEGFR-2 and VEGFR-3 binding on proteolytic removal of the propeptides. Two different proteolytic cleavage sites have been reported in the VEGF-D N-terminus. We report here the crystal structure of the human VEGF-D Cys117Ala mutant at 2.9 {\r A} resolution. Comparison of the VEGF-D and VEGF-C structures shows similar extended N-terminal helices, conserved overall folds, and VEGFR-2 interacting residues. Consistent with this, the affinity and the thermodynamic parameters for VEGFR-2 binding are very similar. In comparison with VEGF-C structures, however, the VEGF-D N-terminal helix was extended by 2 more turns because of a better resolution. Both receptor binding and functional assays of N-terminally truncated VEGF-D polypeptides indicated that the residues between the reported proteolytic cleavage sites are important for VEGF-D binding and activation of VEGFR-3, but not of VEGFR-2. Thus, we define here a VEGFR-2-specific form of VEGF-D that is angiogenic but not lymphangiogenic. These results provide important new insights into VEGF-D structure and function.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/21148085}, author = {Lepp{\"a}nen, Veli-Matti and Jeltsch, Michael and Anisimov, Andrey and Tvorogov, Denis and Aho, Kukka and Kalkkinen, Nisse and Toivanen, Pyry and Yl{\"a}-Herttuala, Seppo and Ballmer-Hofer, Kurt and Alitalo, Kari} } @article {43, title = {Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation}, journal = {Circulation}, volume = {122}, year = {2010}, month = {2010/Oct/}, pages = {1725 - 33}, abstract = {BACKGROUND: Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and neuropilin-1 and is abundantly expressed in the heart, skeletal muscle, and brown fat. The biological function of VEGF-B is incompletely understood. METHODS AND RESULTS: Unlike placenta growth factor, which binds to the same receptors, adeno-associated viral delivery of VEGF-B to mouse skeletal or heart muscle induced very little angiogenesis, vascular permeability, or inflammation. As previously reported for the VEGF-B(167) isoform, transgenic mice and rats expressing both isoforms of VEGF-B in the myocardium developed cardiac hypertrophy yet maintained systolic function. Deletion of the VEGF receptor-1 tyrosine kinase domain or the arterial endothelial Bmx tyrosine kinase inhibited hypertrophy, whereas loss of VEGF-B interaction with neuropilin-1 had no effect. Surprisingly, in rats, the heart-specific VEGF-B transgene induced impressive growth of the epicardial coronary vessels and their branches, with large arteries also seen deep inside the subendocardial myocardium. However, VEGF-B, unlike other VEGF family members, did not induce significant capillary angiogenesis, increased permeability, or inflammatory cell recruitment. CONCLUSIONS: VEGF-B appears to be a coronary growth factor in rats but not in mice. The signals for the VEGF-B-induced cardiac hypertrophy are mediated at least in part via the endothelium. Because cardiomyocyte damage in myocardial ischemia begins in the subendocardial myocardium, the VEGF-B-induced increased arterial supply to this area could have therapeutic potential in ischemic heart disease.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/20937974}, author = {Bry, Maija and Kivel{\"a}, Riikka and Holopainen, Tanja and Anisimov, Andrey and Tammela, Tuomas and Soronen, Jarkko and Silvola, Johanna and Saraste, Antti and Jeltsch, Michael and Korpisalo, Petra and Carmeliet, Peter and Lemstr{\"o}m, Karl B and Shibuya, Masabumi and Yl{\"a}-Herttuala, Seppo and Alhonen, Leena and Mervaala, Eero and Andersson, Leif C and Knuuti, Juhani and Alitalo, Kari} } @article {38, title = {Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle}, journal = {Circ Res}, volume = {104}, year = {2009}, month = {2009/Jun/}, pages = {1302 - 12}, abstract = {The therapeutic potential of vascular endothelial growth factor (VEGF)-C and VEGF-D in skeletal muscle has been of considerable interest as these factors have both angiogenic and lymphangiogenic activities. Previous studies have mainly used adenoviral gene delivery for short-term expression of VEGF-C and VEGF-D in pig, rabbit, and mouse skeletal muscles. Here we have used the activated mature forms of VEGF-C and VEGF-D expressed via recombinant adeno-associated virus (rAAV), which provides stable, long-lasting transgene expression in various tissues including skeletal muscle. Mouse tibialis anterior muscle was transduced with rAAV encoding human or mouse VEGF-C or VEGF-D. Two weeks later, immunohistochemical analysis showed increased numbers of both blood and lymph vessels, and Doppler ultrasound analysis indicated increased blood vessel perfusion. The lymphatic vessels further increased at the 4-week time point were functional, as shown by FITC-lectin uptake and transport. Furthermore, receptor activation and arteriogenic activity were increased by an alanine substitution mutant of human VEGF-C (C137A) having an increased dimer stability and by a chimeric CAC growth factor that contained the VEGF receptor-binding domain flanked by VEGF-C propeptides, but only the latter promoted significantly more blood vessel perfusion when compared to the other growth factors studied. We conclude that long-term expression of VEGF-C and VEGF-D in skeletal muscle results in the generation of new functional blood and lymphatic vessels. The therapeutic value of intramuscular lymph vessels in draining tissue edema and lymphedema can now be evaluated using this model system.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/19443835}, author = {Anisimov, Andrey and Alitalo, Annamari and Korpisalo, Petra and Soronen, Jarkko and Kaijalainen, Seppo and Lepp{\"a}nen, Veli-Matti and Jeltsch, Michael and Yl{\"a}-Herttuala, Seppo and Alitalo, Kari} } @article {37, title = {Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy}, journal = {Circ Res}, volume = {103}, year = {2008}, month = {2008/Oct/}, pages = {1018 - 26}, abstract = {Vascular endothelial growth factor (VEGF)-B is poorly angiogenic but prominently expressed in metabolically highly active tissues, including the heart. We produced mice expressing a cardiac-specific VEGF-B transgene via the alpha-myosin heavy chain promoter. Surprisingly, the hearts of the VEGF-B transgenic mice showed concentric cardiac hypertrophy without significant changes in heart function. The cardiac hypertrophy was attributable to an increased size of the cardiomyocytes. Blood capillary size was increased, whereas the number of blood vessels per cell nucleus remained unchanged. Despite the cardiac hypertrophy, the transgenic mice had lower heart rate and blood pressure than their littermates, and they responded similarly to angiotensin II-induced hypertension, confirming that the hypertrophy does not compromise heart function. Interestingly, the isolated transgenic hearts had less cardiomyocyte damage after ischemia. Significantly increased ceramide and decreased triglyceride levels were found in the transgenic hearts. This was associated with structural changes and eventual lysis of mitochondria, resulting in accumulation of intracellular vacuoles in cardiomyocytes and increased death of the transgenic mice, apparently because of mitochondrial lipotoxicity in the heart. These results suggest that VEGF-B regulates lipid metabolism, an unexpected function for an angiogenic growth factor.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/18757827}, author = {Karpanen, Terhi and Bry, Maija and Ollila, Hanna M and Sepp{\"a}nen-Laakso, Tuulikki and Liimatta, Erkki and Leskinen, Hanna and Kivel{\"a}, Riikka and Helkamaa, Teemu and Merentie, Mari and Jeltsch, Michael and Paavonen, Karri and Andersson, Leif C and Mervaala, Eero and Hassinen, Ilmo E and Yl{\"a}-Herttuala, Seppo and Oresic, Matej and Alitalo, Kari} } @article {35, title = {The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis}, journal = {Cancer Res}, volume = {68}, year = {2008}, month = {2008/Jun/}, pages = {4754 - 62}, abstract = {Solid tumors express a range of factors required to sustain their growth and promote their dissemination. Among these are vascular endothelial growth factor-A (VEGF-A), the key angiogenic stimulant, and VEGF-C, a primary mediator of lymphangiogenesis. Small molecule tyrosine kinase inhibitors offer the potential to inhibit more than one kinase and impede tumor growth by multiple mechanisms. However, their potency toward individual targets can vary. Cediranib (RECENTIN; AZD2171) is an inhibitor of VEGF signaling that has been shown in experimental models to prevent VEGF-A-induced angiogenesis and primary tumor growth, yet the effects of cediranib on VEGF receptor (VEGFR)-3-mediated endothelial cell function and lymphangiogenesis are unknown. To better understand the activity of cediranib against VEGFR-3 and its associated signaling events compared with its activity against VEGFR-2, we used the receptor-specific ligands VEGF-E and VEGF-C156S. In human endothelial cells, cediranib inhibited VEGF-E-induced phosphorylation of VEGFR-2 and VEGF-C156S-induced phosphorylation of VEGFR-3 at concentrations of