@article {441, title = {CCBE1 enhances lymphangiogenesis via ADAMTS3-mediated VEGF-C activation}, journal = {Circulation}, volume = {129}, year = {2014}, month = {05/2014}, chapter = {1962-1971}, abstract = {Background{\textemdash}Hennekam lymphangiectasia-lymphedema syndrome (OMIM 235510) is a rare autosomal recessive disease, which is associated with mutations in the collagen- and calcium-binding EGF domains 1 (CCBE1) gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for CCBE1 interactions with the VEGF-C growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. Methods and Results{\textemdash}By analyzing VEGF-C produced by CCBE1-transfected cells, we found that while CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 (ADAMTS3) protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector (AAV) mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by AAV-VEGF-C. Conclusions{\textemdash}These results identify ADAMTS3 as a VEGF-C activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.}, doi = {http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002779}, url = {http://circ.ahajournals.org/content/early/2014/02/19/CIRCULATIONAHA.113.002779.abstract} } @article {43, title = {Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation}, journal = {Circulation}, volume = {122}, year = {2010}, month = {2010/Oct/}, pages = {1725 - 33}, abstract = {BACKGROUND: Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and neuropilin-1 and is abundantly expressed in the heart, skeletal muscle, and brown fat. The biological function of VEGF-B is incompletely understood. METHODS AND RESULTS: Unlike placenta growth factor, which binds to the same receptors, adeno-associated viral delivery of VEGF-B to mouse skeletal or heart muscle induced very little angiogenesis, vascular permeability, or inflammation. As previously reported for the VEGF-B(167) isoform, transgenic mice and rats expressing both isoforms of VEGF-B in the myocardium developed cardiac hypertrophy yet maintained systolic function. Deletion of the VEGF receptor-1 tyrosine kinase domain or the arterial endothelial Bmx tyrosine kinase inhibited hypertrophy, whereas loss of VEGF-B interaction with neuropilin-1 had no effect. Surprisingly, in rats, the heart-specific VEGF-B transgene induced impressive growth of the epicardial coronary vessels and their branches, with large arteries also seen deep inside the subendocardial myocardium. However, VEGF-B, unlike other VEGF family members, did not induce significant capillary angiogenesis, increased permeability, or inflammatory cell recruitment. CONCLUSIONS: VEGF-B appears to be a coronary growth factor in rats but not in mice. The signals for the VEGF-B-induced cardiac hypertrophy are mediated at least in part via the endothelium. Because cardiomyocyte damage in myocardial ischemia begins in the subendocardial myocardium, the VEGF-B-induced increased arterial supply to this area could have therapeutic potential in ischemic heart disease.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/20937974}, author = {Bry, Maija and Kivel{\"a}, Riikka and Holopainen, Tanja and Anisimov, Andrey and Tammela, Tuomas and Soronen, Jarkko and Silvola, Johanna and Saraste, Antti and Jeltsch, Michael and Korpisalo, Petra and Carmeliet, Peter and Lemstr{\"o}m, Karl B and Shibuya, Masabumi and Yl{\"a}-Herttuala, Seppo and Alhonen, Leena and Mervaala, Eero and Andersson, Leif C and Knuuti, Juhani and Alitalo, Kari} } @article {37, title = {Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy}, journal = {Circ Res}, volume = {103}, year = {2008}, month = {2008/Oct/}, pages = {1018 - 26}, abstract = {Vascular endothelial growth factor (VEGF)-B is poorly angiogenic but prominently expressed in metabolically highly active tissues, including the heart. We produced mice expressing a cardiac-specific VEGF-B transgene via the alpha-myosin heavy chain promoter. Surprisingly, the hearts of the VEGF-B transgenic mice showed concentric cardiac hypertrophy without significant changes in heart function. The cardiac hypertrophy was attributable to an increased size of the cardiomyocytes. Blood capillary size was increased, whereas the number of blood vessels per cell nucleus remained unchanged. Despite the cardiac hypertrophy, the transgenic mice had lower heart rate and blood pressure than their littermates, and they responded similarly to angiotensin II-induced hypertension, confirming that the hypertrophy does not compromise heart function. Interestingly, the isolated transgenic hearts had less cardiomyocyte damage after ischemia. Significantly increased ceramide and decreased triglyceride levels were found in the transgenic hearts. This was associated with structural changes and eventual lysis of mitochondria, resulting in accumulation of intracellular vacuoles in cardiomyocytes and increased death of the transgenic mice, apparently because of mitochondrial lipotoxicity in the heart. These results suggest that VEGF-B regulates lipid metabolism, an unexpected function for an angiogenic growth factor.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/18757827}, author = {Karpanen, Terhi and Bry, Maija and Ollila, Hanna M and Sepp{\"a}nen-Laakso, Tuulikki and Liimatta, Erkki and Leskinen, Hanna and Kivel{\"a}, Riikka and Helkamaa, Teemu and Merentie, Mari and Jeltsch, Michael and Paavonen, Karri and Andersson, Leif C and Mervaala, Eero and Hassinen, Ilmo E and Yl{\"a}-Herttuala, Seppo and Oresic, Matej and Alitalo, Kari} }