@article {589, title = {Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1}, journal = {Scientific Reports}, volume = {7}, year = {2017}, month = {2017/07/07/}, pages = {4916}, doi = {10.1038/s41598-017-04982-1}, url = {https://www.nature.com/articles/s41598-017-04982-1} } @article {42, title = {Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization}, journal = {Cancer Cell}, volume = {18}, year = {2010}, month = {2010/Dec/}, pages = {630 - 40}, abstract = {Antibodies that block vascular endothelial growth factor (VEGF) have become an integral part of antiangiogenic tumor therapy, and antibodies targeting other VEGFs and receptors (VEGFRs) are in clinical trials. Typically receptor-blocking antibodies are targeted to the VEGFR ligand-binding site. Here we describe a monoclonal antibody that inhibits VEGFR-3 homodimer and VEGFR-3/VEGFR-2 heterodimer formation, signal transduction, as well as ligand-induced migration and sprouting of microvascular endothelial cells. Importantly, we show that combined use of antibodies blocking ligand binding and receptor dimerization improves VEGFR inhibition and results in stronger inhibition of endothelial sprouting and vascular network formation in vivo. These results suggest that receptor dimerization inhibitors could be used to enhance antiangiogenic activity of antibodies blocking ligand binding in tumor therapy.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/21130043}, author = {Tvorogov, Denis and Anisimov, Andrey and Zheng, Wei and Lepp{\"a}nen, Veli-Matti and Tammela, Tuomas and Laurinavicius, Simonas and Holnthoner, Wolfgang and Heloter{\"a}, Hanna and Holopainen, Tanja and Jeltsch, Michael and Kalkkinen, Nisse and Lankinen, Hilkka and Ojala, P{\"a}ivi M and Alitalo, Kari} } @article {34, title = {Enhanced capillary formation stimulated by a chimeric vascular endothelial growth factor/vascular endothelial growth factor-C silk domain fusion protein}, journal = {Circ Res}, volume = {100}, year = {2007}, month = {2007/May/}, pages = {1460 - 7}, abstract = {Vascular endothelial growth factor (VEGF)-C and VEGF-D require proteolytic cleavage of the carboxy terminal silk-homology domain for activation. To study the functions of the VEGF-C propeptides, we engineered a chimeric growth factor protein, VEGF-CAC, composed of the amino- and carboxy-terminal propeptides of VEGF-C fused to the receptor-activating core domain of VEGF. Like VEGF-C, VEGF-CAC underwent proteolytic cleavage, and like VEGF, it bound to and activated VEGF receptor-1 and VEGF receptor-2, but not the VEGF-C receptor VEGF receptor-3. VEGF-CAC also bound to neuropilins in a heparin-dependent manner. Strikingly, when VEGF-CAC was expressed via an adenovirus vector in the ear skin of immunodeficient mice, it proved to be a more potent inducer of capillary angiogenesis than VEGF. The VEGF-CAC-induced vessels differed greatly from those induced by VEGF, as they formed a very dense and fine network of pericyte and basement membrane-covered capillaries that were functional, as shown by lectin perfusion experiments. VEGF-CAC could prove useful in proangiogenic therapies in patients experiencing tissue ischemia.}, url = {http://view.ncbi.nlm.nih.gov/pubmed/17478734}, author = {Keskitalo, Salla and Tammela, Tuomas and Lyytikka, Johannes and Karpanen, Terhi and Jeltsch, Michael and Markkanen, Johanna and Yla-Herttuala, Seppo and Alitalo, Kari} }