TY - JOUR T1 - Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation JF - Circulation Y1 - 2010 A1 - Bry, Maija A1 - Kivelä, Riikka A1 - Holopainen, Tanja A1 - Anisimov, Andrey A1 - Tammela, Tuomas A1 - Soronen, Jarkko A1 - Silvola, Johanna A1 - Saraste, Antti A1 - Jeltsch, Michael A1 - Korpisalo, Petra A1 - Carmeliet, Peter A1 - Lemström, Karl B A1 - Shibuya, Masabumi A1 - Ylä-Herttuala, Seppo A1 - Alhonen, Leena A1 - Mervaala, Eero A1 - Andersson, Leif C A1 - Knuuti, Juhani A1 - Alitalo, Kari AB - BACKGROUND: Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and neuropilin-1 and is abundantly expressed in the heart, skeletal muscle, and brown fat. The biological function of VEGF-B is incompletely understood. METHODS AND RESULTS: Unlike placenta growth factor, which binds to the same receptors, adeno-associated viral delivery of VEGF-B to mouse skeletal or heart muscle induced very little angiogenesis, vascular permeability, or inflammation. As previously reported for the VEGF-B(167) isoform, transgenic mice and rats expressing both isoforms of VEGF-B in the myocardium developed cardiac hypertrophy yet maintained systolic function. Deletion of the VEGF receptor-1 tyrosine kinase domain or the arterial endothelial Bmx tyrosine kinase inhibited hypertrophy, whereas loss of VEGF-B interaction with neuropilin-1 had no effect. Surprisingly, in rats, the heart-specific VEGF-B transgene induced impressive growth of the epicardial coronary vessels and their branches, with large arteries also seen deep inside the subendocardial myocardium. However, VEGF-B, unlike other VEGF family members, did not induce significant capillary angiogenesis, increased permeability, or inflammatory cell recruitment. CONCLUSIONS: VEGF-B appears to be a coronary growth factor in rats but not in mice. The signals for the VEGF-B-induced cardiac hypertrophy are mediated at least in part via the endothelium. Because cardiomyocyte damage in myocardial ischemia begins in the subendocardial myocardium, the VEGF-B-induced increased arterial supply to this area could have therapeutic potential in ischemic heart disease. VL - 122 UR - http://view.ncbi.nlm.nih.gov/pubmed/20937974 IS - 17 JO - Circulation ER -