TY - JOUR T1 - Key molecules in lymphatic development, function, and identification JF - Annals of Anatomy - Anatomischer Anzeiger Y1 - 2018 A1 - Jha, SK A1 - Rauniyar, K A1 - Jeltsch, M AB - While both blood and lymphatic vessels transport fluids and thus share many similarities, they also show functional and structural differences, which can be used to differentiate them. Specific visualization of lymphatic vessels has historically been and still is a pivot point in lymphatic research. Many of the proteins that are investigated by molecular biologists in lymphatic research have been defined as marker molecules, i.e. to visualize and distinguish lymphatic endothelial cells (LECs) from other cell types, most notably from blood vascular endothelial cells (BECs) and cells of the hematopoietic lineage.Among the factors that drive the developmental differentiation of lymphatic structures from venous endothelium, Prospero homeobox protein 1 (PROX1) is the master transcriptional regulator. PROX1 maintains lymphatic identity also in the adult organism and thus is a universal LEC marker. Vascular endothelial growth factor receptor-3 (VEGFR-3) is the major tyrosine kinase receptor that drives LEC proliferation and migration. The major activator for VEGFR-3 is vascular endothelial growth factor-C (VEGF-C). However, before VEGF-C can signal, it needs to be proteolytically activated by an extracellular protein complex comprised of Collagen and calcium binding EGF domains 1 (CCBE1) protein and the protease A disintegrin and metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3).This minireview attempts to give an overview of these and a few other central proteins that scientific inquiry has linked specifically to the lymphatic vasculature. It is limited in scope to a brief description of their main functions, properties and developmental roles. VL - 219 SN - 09409602 UR - http://linkinghub.elsevier.com/retrieve/pii/S0940960218300712 JO - Ann Anat ER -