TY - JOUR T1 - Functional Importance of a Proteoglycan Co-Receptor in Pathologic Lymphangiogenesis JF - Circulation Research Y1 - 2016 A1 - Johns, Scott C. A1 - Yin, Xin A1 - Jeltsch, Michael A1 - Bishop, Joseph R. A1 - Schuksz, Manuela A1 - Ghazal, Roland El A1 - Wilcox-Adelman, Sarah A. A1 - Alitalo, Kari A1 - Fuster, Mark M. KW - endothelial cell growth KW - glycosaminoglycan KW - lymphatic capillary KW - Proteoglycan KW - vascular endothelial growth factor receptor AB - Rationale: Lymphatic vessel growth is mediated by major pro-lymphangiogenic factors such as VEGF-C and -D, among other endothelial effectors. Heparan sulfate is a linear polysaccharide expressed on proteoglycan core proteins on cell-membranes and matrix, playing roles in angiogenesis, although little is known regarding any function(s) in lymphatic remodeling in vivo. Objective: To explore the genetic basis and mechanisms whereby heparan sulfate proteoglycans mediate pathologic lymphatic remodeling. Methods and Results: Lymphatic endothelial deficiency in the major heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1; involved in glycan-chain sulfation) was associated with reduced lymphangiogenesis in pathologic models, including spontaneous neoplasia. Mouse mutants demonstrated tumor-associated lymphatic vessels with apoptotic nuclei. Mutant lymphatic endothelia demonstrated impaired mitogen (Erk) and survival (Akt) pathway signaling as well as reduced VEGF-C mediated protection from starvation-induced apoptosis. Lymphatic endothelial specific Ndst1 deficiency (in Ndst1f/fProx1+/CreERT2 mice) was sufficient to inhibit VEGF-C dependent lymphangiogenesis. Lymphatic heparan sulfate deficiency reduced phosphorylation of the major lymphatic growth receptor VEGFR-3 in response to multiple VEGF-C species. Syndecan-4 was the dominantly expressed heparan sulfate proteoglycan in mouse lymphatic endothelia, and pathologic lymphangiogenesis was impaired in Sdc4(-/-) mice. On the lymphatic cell surface, VEGF-C induced robust association between syndecan-4 and VEGFR-3 which was sensitive to glycan disruption. Moreover, VEGFR-3 mitogen and survival signaling was reduced in the setting of Ndst1 or Sdc4 deficiency. Conclusions: These findings demonstrate the genetic importance of heparan sulfate and the major lymphatic proteoglycan syndecan-4 in pathologic lymphatic remodeling. This may introduce novel future strategies to alter pathologic lymphatic-vascular remodeling. VL - 119 UR - http://circres.ahajournals.org/content/early/2016/05/25/CIRCRESAHA.116.308504 IS - 2 ER - TY - CHAP T1 - The genetic causes of primary lymphedema. T2 - Erkrankungen des Lymphgefäßsystems Y1 - 2015 A1 - Mattonet, Kenny A1 - Wilting, Jörg A1 - Jeltsch, Michael ED - Weissleder, Horst ED - Schuchhardt, Christian AB - English: Primary lymphedema can be treated, but not cured. In addition, their diagnosis is due to heterogeneous phenotypes often ambiguous. However, these problems can be tackled by identifying the edema-causing genetic lesions to yield unambiguous diagnoses and by developing specific treatments that address the underlying, molecular cause. New developments in molecular biology are providing the necessary tools for these tasks and in the recent years the genetic causes of many forms of primary lymphedema have been identified, notably by exome sequencing. For a significant proportion of lymphatic disorders multifactorial genetic causes are suspected. This chapter provides an overview of the current knowledge on the genetic origin, the categorization as well as the molecular and biochemical causes of primary lymphedema. German: Primäre Lymphödeme sind behandelbar, aber nicht heilbar. Zudem ist die Diagnostik aufgrund heterogener Phänotypen oft nicht eindeutig. Um diese Probleme anzugehen, müssen die das Ödem verursachenden genetischen Ursachen gefunden, diagnostiziert und gezielt behandelt werden. Die hierzu notwendigen Techniken liefern die neuen Entwicklungen in der Molekularbiologie. Insbesondere durch die Technik der Exom-Sequenzierung wurden in den letzten Jahren die genetischen Ursachen vieler primärer Lymphödeme identifiziert. Für einen weiteren großen Anteil dieser Erkrankungen werden multifaktorielle genetische Dispositionen vermutet. Dieses Kapitel gibt einen Überblick über den derzeitigen Kenntnisstand der genetischen Ursachen, der Kategorisierung sowie der molekularbiologischen und biochemischen Grundlagen primärer Lymphödeme. JF - Erkrankungen des Lymphgefäßsystems PB - Viavital Verlag CY - Cologne SN - 978-3-934371-53-8 ER - TY - CHAP T1 - The TIE Receptor Family T2 - Receptor Tyrosine Kinases: Family and Subfamilies Y1 - 2015 A1 - Saharinen, Pipsa A1 - Jeltsch, Michael A1 - Santoyo, MayteM. A1 - Leppänen, Veli-Matti A1 - Alitalo, Kari ED - Wheeler, Deric L. ED - Yarden, Yosef KW - ANG KW - Angiopoietin KW - ANGPT KW - Endothelial cell KW - Lymphatic vessel KW - Neovascularization KW - TIE1 KW - TIE2 KW - Vascular dysfunction JF - Receptor Tyrosine Kinases: Family and Subfamilies PB - Springer International Publishing UR - https://link.springer.com/content/pdf/10.1007%2F978-3-319-11888-8_16.pdf ER - TY - JOUR T1 - Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium JF - Arterioscler Thromb Vasc Biol Y1 - 2008 A1 - Li, Xuri A1 - Tjwa, Marc A1 - Van Hove, Inge A1 - Enholm, Berndt A1 - Neven, Elke A1 - Paavonen, Karri A1 - Jeltsch, Michael A1 - Juan, Toni Diez A1 - Sievers, Richard E A1 - Chorianopoulos, Emmanuel A1 - Wada, Hiromichi A1 - Vanwildemeersch, Maarten A1 - Noel, Agnes A1 - Foidart, Jean-Michel A1 - Springer, Matthew L A1 - von Degenfeld, Georges A1 - Dewerchin, Mieke A1 - Blau, Helen M A1 - Alitalo, Kari A1 - Eriksson, Ulf A1 - Carmeliet, Peter A1 - Moons, Lieve AB - OBJECTIVE: The endogenous role of the VEGF family member vascular endothelial growth factor-B (VEGF-B) in pathological angiogenesis remains unclear. METHODS AND RESULTS: We studied the role of VEGF-B in various models of pathological angiogenesis using mice lacking VEGF-B (VEGF-B(-/-)) or overexpressing VEGF-B(167). After occlusion of the left coronary artery, VEGF-B deficiency impaired vessel growth in the ischemic myocardium whereas, in wild-type mice, VEGF-B(167) overexpression enhanced revascularization of the infarct and ischemic border zone. By contrast, VEGF-B deficiency did not affect vessel growth in the wounded skin, hypoxic lung, ischemic retina, or ischemic limb. Moreover, VEGF-B(167) overexpression failed to enhance vascular growth in the skin or ischemic limb. CONCLUSIONS: VEGF-B appears to have a relatively restricted angiogenic activity in the ischemic heart. These insights might offer novel therapeutic opportunities. VL - 28 UR - http://view.ncbi.nlm.nih.gov/pubmed/18511699 IS - 9 JO - Arteriosclerosis, Thrombosis, and Vascular Biology ER - TY - JOUR T1 - The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis JF - Cancer Res Y1 - 2008 A1 - Heckman, Caroline A A1 - Holopainen, Tanja A1 - Wirzenius, Maria A1 - Keskitalo, Salla A1 - Jeltsch, Michael A1 - Ylä-Herttuala, Seppo A1 - Wedge, Stephen R A1 - Jürgensmeier, Juliane M A1 - Alitalo, Kari AB - Solid tumors express a range of factors required to sustain their growth and promote their dissemination. Among these are vascular endothelial growth factor-A (VEGF-A), the key angiogenic stimulant, and VEGF-C, a primary mediator of lymphangiogenesis. Small molecule tyrosine kinase inhibitors offer the potential to inhibit more than one kinase and impede tumor growth by multiple mechanisms. However, their potency toward individual targets can vary. Cediranib (RECENTIN; AZD2171) is an inhibitor of VEGF signaling that has been shown in experimental models to prevent VEGF-A-induced angiogenesis and primary tumor growth, yet the effects of cediranib on VEGF receptor (VEGFR)-3-mediated endothelial cell function and lymphangiogenesis are unknown. To better understand the activity of cediranib against VEGFR-3 and its associated signaling events compared with its activity against VEGFR-2, we used the receptor-specific ligands VEGF-E and VEGF-C156S. In human endothelial cells, cediranib inhibited VEGF-E-induced phosphorylation of VEGFR-2 and VEGF-C156S-induced phosphorylation of VEGFR-3 at concentrations of