%0 Journal Article %J Circulation %D 2010 %T Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation %A Bry, Maija %A Kivelä, Riikka %A Holopainen, Tanja %A Anisimov, Andrey %A Tammela, Tuomas %A Soronen, Jarkko %A Silvola, Johanna %A Saraste, Antti %A Jeltsch, Michael %A Korpisalo, Petra %A Carmeliet, Peter %A Lemström, Karl B %A Shibuya, Masabumi %A Ylä-Herttuala, Seppo %A Alhonen, Leena %A Mervaala, Eero %A Andersson, Leif C %A Knuuti, Juhani %A Alitalo, Kari %X BACKGROUND: Vascular endothelial growth factor-B (VEGF-B) binds to VEGF receptor-1 and neuropilin-1 and is abundantly expressed in the heart, skeletal muscle, and brown fat. The biological function of VEGF-B is incompletely understood. METHODS AND RESULTS: Unlike placenta growth factor, which binds to the same receptors, adeno-associated viral delivery of VEGF-B to mouse skeletal or heart muscle induced very little angiogenesis, vascular permeability, or inflammation. As previously reported for the VEGF-B(167) isoform, transgenic mice and rats expressing both isoforms of VEGF-B in the myocardium developed cardiac hypertrophy yet maintained systolic function. Deletion of the VEGF receptor-1 tyrosine kinase domain or the arterial endothelial Bmx tyrosine kinase inhibited hypertrophy, whereas loss of VEGF-B interaction with neuropilin-1 had no effect. Surprisingly, in rats, the heart-specific VEGF-B transgene induced impressive growth of the epicardial coronary vessels and their branches, with large arteries also seen deep inside the subendocardial myocardium. However, VEGF-B, unlike other VEGF family members, did not induce significant capillary angiogenesis, increased permeability, or inflammatory cell recruitment. CONCLUSIONS: VEGF-B appears to be a coronary growth factor in rats but not in mice. The signals for the VEGF-B-induced cardiac hypertrophy are mediated at least in part via the endothelium. Because cardiomyocyte damage in myocardial ischemia begins in the subendocardial myocardium, the VEGF-B-induced increased arterial supply to this area could have therapeutic potential in ischemic heart disease. %B Circulation %V 122 %P 1725 - 33 %8 2010/Oct/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/20937974 %N 17 %! Circulation