%0 Journal Article %J Blood %D 2020 %T VEGF-C Protects the Integrity of Bone Marrow Perivascular Niche %A Fang, Shentong %A Chen, Shuo %A Nurmi, Harri %A Leppänen, Veli-Matti %A Jeltsch, Michael %A Scadden, David T. %A Silberstein, Lev %A Mikkola, Hanna %A Alitalo, Kari %X Key Points. Vegfc deletion in endothelial or LepR+ cells compromises the bone marrow perivascular niche and hematopoietic stem cell maintenance.Exogenous admin %B Blood %P accepted - for publication %8 2020/07/31/ %G eng %U https://ashpublications.org/blood/article/doi/10.1182/blood.2020005699/463465/VEGF-C-Protects-the-Integrity-of-Bone-Marrow %! Blood %R 10.1182/blood.2020005699 %0 Journal Article %J Circulation Research %D 2016 %T Functional Importance of a Proteoglycan Co-Receptor in Pathologic Lymphangiogenesis %A Johns, Scott C. %A Yin, Xin %A Jeltsch, Michael %A Bishop, Joseph R. %A Schuksz, Manuela %A Ghazal, Roland El %A Wilcox-Adelman, Sarah A. %A Alitalo, Kari %A Fuster, Mark M. %K endothelial cell growth %K glycosaminoglycan %K lymphatic capillary %K Proteoglycan %K vascular endothelial growth factor receptor %X Rationale: Lymphatic vessel growth is mediated by major pro-lymphangiogenic factors such as VEGF-C and -D, among other endothelial effectors. Heparan sulfate is a linear polysaccharide expressed on proteoglycan core proteins on cell-membranes and matrix, playing roles in angiogenesis, although little is known regarding any function(s) in lymphatic remodeling in vivo. Objective: To explore the genetic basis and mechanisms whereby heparan sulfate proteoglycans mediate pathologic lymphatic remodeling. Methods and Results: Lymphatic endothelial deficiency in the major heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1; involved in glycan-chain sulfation) was associated with reduced lymphangiogenesis in pathologic models, including spontaneous neoplasia. Mouse mutants demonstrated tumor-associated lymphatic vessels with apoptotic nuclei. Mutant lymphatic endothelia demonstrated impaired mitogen (Erk) and survival (Akt) pathway signaling as well as reduced VEGF-C mediated protection from starvation-induced apoptosis. Lymphatic endothelial specific Ndst1 deficiency (in Ndst1f/fProx1+/CreERT2 mice) was sufficient to inhibit VEGF-C dependent lymphangiogenesis. Lymphatic heparan sulfate deficiency reduced phosphorylation of the major lymphatic growth receptor VEGFR-3 in response to multiple VEGF-C species. Syndecan-4 was the dominantly expressed heparan sulfate proteoglycan in mouse lymphatic endothelia, and pathologic lymphangiogenesis was impaired in Sdc4(-/-) mice. On the lymphatic cell surface, VEGF-C induced robust association between syndecan-4 and VEGFR-3 which was sensitive to glycan disruption. Moreover, VEGFR-3 mitogen and survival signaling was reduced in the setting of Ndst1 or Sdc4 deficiency. Conclusions: These findings demonstrate the genetic importance of heparan sulfate and the major lymphatic proteoglycan syndecan-4 in pathologic lymphatic remodeling. This may introduce novel future strategies to alter pathologic lymphatic-vascular remodeling. %B Circulation Research %V 119 %P 210-221 %8 05/2016 %G eng %U http://circres.ahajournals.org/content/early/2016/05/25/CIRCRESAHA.116.308504 %N 2 %R 10.1161/CIRCRESAHA.116.308504 %0 Journal Article %J PLoS ONE %D 2010 %T Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis %A Albrecht, Imke %A Kopfstein, Lucie %A Strittmatter, Karin %A Schomber, Tibor %A Falkevall, Annelie %A Hagberg, Carolina E %A Lorentz, Pascal %A Jeltsch, Michael %A Alitalo, Kari %A Eriksson, Ulf %A Christofori, Gerhard %A Pietras, Kristian %X BACKGROUND: The family of vascular endothelial growth factors (VEGF) contains key regulators of blood and lymph vessel development, including VEGF-A, -B, -C, -D, and placental growth factor. The role of VEGF-B during physiological or pathological angiogenesis has not yet been conclusively delineated. Herein, we investigate the function of VEGF-B by the generation of mouse models of cancer with transgenic expression of VEGF-B or homozygous deletion of Vegfb. METHODOLOGY/PRINCIPAL FINDINGS: Ectopic expression of VEGF-B in the insulin-producing β-cells of the pancreas did not alter the abundance or architecture of the islets of Langerhans. The vasculature from transgenic mice exhibited a dilated morphology, but was of similar density as that of wildtype mice. Unexpectedly, we found that transgenic expression of VEGF-B in the RIP1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis retarded tumor growth. Conversely, RIP1-Tag2 mice deficient for Vegfb presented with larger tumors. No differences in vascular density, perfusion or immune cell infiltration upon altered Vegfb gene dosage were noted. However, VEGF-B acted to increase blood vessel diameter both in normal pancreatic islets and in RIP1-Tag2 tumors. CONCLUSIONS/SIGNIFICANCE: Taken together, our results illustrate the differences in biological function between members of the VEGF family, and highlight the necessity of in-depth functional studies of VEGF-B to fully understand the effects of VEGFR-1 inhibitors currently used in the clinic. %B PLoS ONE %V 5 %P e14109 %8 2010// %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/21124841 %N 11 %! PLoS ONE %0 Journal Article %J Arterioscler Thromb Vasc Biol %D 2008 %T Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium %A Li, Xuri %A Tjwa, Marc %A Van Hove, Inge %A Enholm, Berndt %A Neven, Elke %A Paavonen, Karri %A Jeltsch, Michael %A Juan, Toni Diez %A Sievers, Richard E %A Chorianopoulos, Emmanuel %A Wada, Hiromichi %A Vanwildemeersch, Maarten %A Noel, Agnes %A Foidart, Jean-Michel %A Springer, Matthew L %A von Degenfeld, Georges %A Dewerchin, Mieke %A Blau, Helen M %A Alitalo, Kari %A Eriksson, Ulf %A Carmeliet, Peter %A Moons, Lieve %X OBJECTIVE: The endogenous role of the VEGF family member vascular endothelial growth factor-B (VEGF-B) in pathological angiogenesis remains unclear. METHODS AND RESULTS: We studied the role of VEGF-B in various models of pathological angiogenesis using mice lacking VEGF-B (VEGF-B(-/-)) or overexpressing VEGF-B(167). After occlusion of the left coronary artery, VEGF-B deficiency impaired vessel growth in the ischemic myocardium whereas, in wild-type mice, VEGF-B(167) overexpression enhanced revascularization of the infarct and ischemic border zone. By contrast, VEGF-B deficiency did not affect vessel growth in the wounded skin, hypoxic lung, ischemic retina, or ischemic limb. Moreover, VEGF-B(167) overexpression failed to enhance vascular growth in the skin or ischemic limb. CONCLUSIONS: VEGF-B appears to have a relatively restricted angiogenic activity in the ischemic heart. These insights might offer novel therapeutic opportunities. %B Arterioscler Thromb Vasc Biol %V 28 %P 1614 - 20 %8 2008/Sep/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/18511699 %N 9 %! Arteriosclerosis, Thrombosis, and Vascular Biology %0 Journal Article %J J Cell Biol %D 2003 %T VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia %A Gerhardt, Holger %A Golding, Matthew %A Fruttiger, Marcus %A Ruhrberg, Christiana %A Lundkvist, Andrea %A Abramsson, Alexandra %A Jeltsch, Michael %A Mitchell, Christopher %A Alitalo, Kari %A Shima, David %A Betsholtz, Christer %X Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells. %B J Cell Biol %V 161 %P 1163 - 77 %8 2003/Jun/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/12810700 %N 6 %! The Journal of Cell Biology %0 Journal Article %J Science (80- ) %D 1997 %T Hyperplasia of lymphatic vessels in VEGF-C transgenic mice %A Jeltsch, M %A Kaipainen, A %A Joukov, V %A Meng, X %A Lakso, M %A Rauvala, H %A Swartz, M %A Fukumura, D %A Jain, R K %A Alitalo, K %X No growth factors specific for the lymphatic vascular system have yet been described. Vascular endothelial growth factor (VEGF) regulates vascular permeability and angiogenesis, but does not promote lymphangiogenesis. Overexpression of VEGF-C, a ligand of the VEGF receptors VEGFR-3 and VEGFR-2, in the skin of transgenic mice resulted in lymphatic, but not vascular, endothelial proliferation and vessel enlargement. Thus, VEGF-C induces selective hyperplasia of the lymphatic vasculature, which is involved in the draining of interstitial fluid and in immune function, inflammation, and tumor metastasis. VEGF-C may play a role in disorders involving the lymphatic system and may be of potential use in therapeutic lymphangiogenesis. %B Science (80- ) %V 276 %P 1423 - 5 %8 1997/May/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/9162011 %N 5317 %! Science