%0 Journal Article %J Tissue Engineering Part B %D 2016 %T Lymphatic Vessels in Regenerative Medicine and Tissue Engineering %A Schaupper, Mira V. %A Jeltsch, Michael %A Rohringer, Sabrina %A Redl, Heinz %A Holnthoner, Wolfgang %X Once a DOI is available for this article, the final publication will be available from Mary Ann Liebert, Inc., publishers at http://dx.doi.org/10.1089/TEN.TEB.2016.0034. The postprint manuscript is available from here and for the next 30 days also from the publisher via this bit.ly shortcut: http://bit.ly/1VKjjMk. %B Tissue Engineering Part B %V 22 %P 1-13 %8 2016 %G eng %U http://online.liebertpub.com/doi/10.1089/ten.TEB.2016.0034 %N 5 %9 Review %R 10.1089/ten.TEB.2016.0034 %0 Journal Article %J Cancer Cell %D 2010 %T Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization %A Tvorogov, Denis %A Anisimov, Andrey %A Zheng, Wei %A Leppänen, Veli-Matti %A Tammela, Tuomas %A Laurinavicius, Simonas %A Holnthoner, Wolfgang %A Heloterä, Hanna %A Holopainen, Tanja %A Jeltsch, Michael %A Kalkkinen, Nisse %A Lankinen, Hilkka %A Ojala, Päivi M %A Alitalo, Kari %X Antibodies that block vascular endothelial growth factor (VEGF) have become an integral part of antiangiogenic tumor therapy, and antibodies targeting other VEGFs and receptors (VEGFRs) are in clinical trials. Typically receptor-blocking antibodies are targeted to the VEGFR ligand-binding site. Here we describe a monoclonal antibody that inhibits VEGFR-3 homodimer and VEGFR-3/VEGFR-2 heterodimer formation, signal transduction, as well as ligand-induced migration and sprouting of microvascular endothelial cells. Importantly, we show that combined use of antibodies blocking ligand binding and receptor dimerization improves VEGFR inhibition and results in stronger inhibition of endothelial sprouting and vascular network formation in vivo. These results suggest that receptor dimerization inhibitors could be used to enhance antiangiogenic activity of antibodies blocking ligand binding in tumor therapy. %B Cancer Cell %V 18 %P 630 - 40 %8 2010/Dec/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/21130043 %N 6 %! Cancer Cell