%0 Journal Article %J Circ Res %D 2001 %T Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin %A Enholm, B %A Karpanen, T %A Jeltsch, M %A Kubo, H %A Stenback, F %A Prevo, R %A Jackson, D G %A Yla-Herttuala, S %A Alitalo, K %X The growth of blood and lymphatic vasculature is mediated in part by secreted polypeptides of the vascular endothelial growth factor (VEGF) family. The prototype VEGF binds VEGF receptor (VEGFR)-1 and VEGFR-2 and is angiogenic, whereas VEGF-C, which binds to VEGFR-2 and VEGFR-3, is either angiogenic or lymphangiogenic in different assays. We used an adenoviral gene transfer approach to compare the effects of these growth factors in adult mice. Recombinant adenoviruses encoding human VEGF-C or VEGF were injected subcutaneously into C57Bl6 mice or into the ears of nude mice. Immunohistochemical analysis showed that VEGF-C upregulated VEGFR-2 and VEGFR-3 expression and VEGF upregulated VEGFR-2 expression at 4 days after injection. After 2 weeks, histochemical and immunohistochemical analysis, including staining for the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), the vascular endothelial marker platelet-endothelial cell adhesion molecule-1 (PECAM-1), and the proliferating cell nuclear antigen (PCNA) revealed that VEGF-C induced mainly lymphangiogenesis in contrast to VEGF, which induced only angiogenesis. These results have significant implications in the planning of gene therapy using these growth factors. %B Circ Res %V 88 %P 623 - 9 %8 2001/Mar/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/11282897 %N 6 %! Circulation Research %0 Journal Article %J Circulation %D 2000 %T Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta %A Hiltunen, M O %A Laitinen, M %A Turunen, M P %A Jeltsch, M %A Hartikainen, J %A Rissanen, T T %A Laukkanen, J %A Niemi, M %A Kossila, M %A Häkkinen, T P %A Kivelä, A %A Enholm, B %A Mansukoski, H %A Turunen, A M %A Alitalo, K %A Ylä-Herttuala, S %X BACKGROUND: Gene transfer to the vessel wall may provide new possibilities for the treatment of vascular disorders, such as postangioplasty restenosis. In this study, we analyzed the effects of adenovirus-mediated vascular endothelial growth factor (VEGF)-C gene transfer on neointima formation after endothelial denudation in rabbits. For comparison, a second group was treated with VEGF-A adenovirus and a third group with lacZ adenovirus. Clinical-grade adenoviruses were used for the study. METHODS AND RESULTS: Aortas of cholesterol-fed New Zealand White rabbits were balloon-denuded, and gene transfer was performed 3 days later. Animals were euthanized 2 and 4 weeks after the gene transfer, and intima/media ratio (I/M), histology, and cell proliferation were analyzed. Two weeks after the gene transfer, I/M in the lacZ-transfected control group was 0. 57+/-0.04. VEGF-C gene transfer reduced I/M to 0.38+/-0.02 (P:<0.05 versus lacZ group). I/M in VEGF-A-treated animals was 0.49+/-0.17 (P:=NS). The tendency that both VEGF groups had smaller I/M persisted at the 4-week time point, when the lacZ group had an I/M of 0.73+/-0.16, the VEGF-C group 0.44+/-0.14, and the VEGF-A group 0. 63+/-0.21 (P:=NS). Expression of VEGF receptors 1, 2, and 3 was detected in the vessel wall by immunocytochemistry and in situ hybridization. As an additional control, the effect of adenovirus on cell proliferation was analyzed by performing gene transfer to intact aorta without endothelial denudation. No differences were seen in smooth muscle cell proliferation or I/M between lacZ adenovirus and 0.9% saline-treated animals. CONCLUSIONS: Adenovirus-mediated VEGF-C gene transfer may be useful for the treatment of postangioplasty restenosis and vessel wall thickening after vascular manipulations. %B Circulation %V 102 %P 2262 - 8 %8 2000/Oct/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/11056103 %N 18 %! Circulation