%0 Journal Article %J Cold Spring Harbor Perspectives in Biology %D 2013 %T Receptor Tyrosine Kinase-Mediated Angiogenesis %A Jeltsch, Michael %A Leppänen, Veli-Matti %A Saharinen, Pipsa %A Alitalo, Kari %X The endothelial cell is the essential cell type forming the inner layer of the vasculature. Two families of receptor tyrosine kinases (RTKs) are almost completely endothelial cell specific: the vascular endothelial growth factor (VEGF) receptors (VEGFR1-3) and the Tie receptors (Tie1 and Tie2). Both are key players governing the generation of blood and lymphatic vessels during embryonic development. Because the growth of new blood and lymphatic vessels (or the lack thereof) is a central element in many diseases, the VEGF and the Tie receptors provide attractive therapeutic targets in various diseases. Indeed, several drugs directed to these RTK signaling pathways are already on the market, whereas many are in clinical trials. Here we review the VEGFR and Tie families, their involvement in developmental and pathological angiogenesis, and the different possibilities for targeting them to either block or enhance angiogenesis and lymphangiogenesis. %B Cold Spring Harbor Perspectives in Biology %V 5 %8 2013 %@ , 1943-0264 %G eng %U http://cshperspectives.cshlp.org/content/5/9/a009183 %N 9 %! Cold Spring Harb Perspect Biol %R 10.1101/cshperspect.a009183 %0 Journal Article %J Arterioscler Thromb Vasc Biol %D 2008 %T Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium %A Li, Xuri %A Tjwa, Marc %A Van Hove, Inge %A Enholm, Berndt %A Neven, Elke %A Paavonen, Karri %A Jeltsch, Michael %A Juan, Toni Diez %A Sievers, Richard E %A Chorianopoulos, Emmanuel %A Wada, Hiromichi %A Vanwildemeersch, Maarten %A Noel, Agnes %A Foidart, Jean-Michel %A Springer, Matthew L %A von Degenfeld, Georges %A Dewerchin, Mieke %A Blau, Helen M %A Alitalo, Kari %A Eriksson, Ulf %A Carmeliet, Peter %A Moons, Lieve %X OBJECTIVE: The endogenous role of the VEGF family member vascular endothelial growth factor-B (VEGF-B) in pathological angiogenesis remains unclear. METHODS AND RESULTS: We studied the role of VEGF-B in various models of pathological angiogenesis using mice lacking VEGF-B (VEGF-B(-/-)) or overexpressing VEGF-B(167). After occlusion of the left coronary artery, VEGF-B deficiency impaired vessel growth in the ischemic myocardium whereas, in wild-type mice, VEGF-B(167) overexpression enhanced revascularization of the infarct and ischemic border zone. By contrast, VEGF-B deficiency did not affect vessel growth in the wounded skin, hypoxic lung, ischemic retina, or ischemic limb. Moreover, VEGF-B(167) overexpression failed to enhance vascular growth in the skin or ischemic limb. CONCLUSIONS: VEGF-B appears to have a relatively restricted angiogenic activity in the ischemic heart. These insights might offer novel therapeutic opportunities. %B Arterioscler Thromb Vasc Biol %V 28 %P 1614 - 20 %8 2008/Sep/ %G eng %U http://view.ncbi.nlm.nih.gov/pubmed/18511699 %N 9 %! Arteriosclerosis, Thrombosis, and Vascular Biology