Biblio

Journal Article
Anisimov A, Alitalo A, Korpisalo P, Soronen J, Kaijalainen S, Leppänen V-M, ym.. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res [Internet]. 2009;104(11):1302 - 12. http://view.ncbi.nlm.nih.gov/pubmed/19443835PDF icon Andrey Anisimov et al., Circulation Research 2009 (8.03 MB)PDF icon Andrey Anisimov et al., Circulation Research 2009, supplement (5.9 MB)
Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, ym.. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res [Internet]. 2001;88(6):623 - 9. http://view.ncbi.nlm.nih.gov/pubmed/11282897PDF icon Bernd Enholm et al., Circulation Research 2001 (2.93 MB)
Saaristo A, Veikkola T, Enholm B, Hytönen M, Arola J, Pajusola K, ym.. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J [Internet]. 2002;16(9):1041 - 9. http://view.ncbi.nlm.nih.gov/pubmed/12087065PDF icon Anne Saaristo et al., FASEB Journal 2002 (966.08 KB)
Rauniyar K, Akhondzadeh S, Gąciarz A, Künnapuu J, Jeltsch M. Bioactive VEGF-C from E. coli. Scientific Reports [Internet]. 2022;12(1). https://www.nature.com/articles/s41598-022-22960-0PDF icon Rauniyar et al. - 2022 - Bioactive VEGF-C from E. coli (4.19 MB)
Saharinen P, Helotera H, Miettinen J, Norrmen C, D'Amico G, Jeltsch M, ym.. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev [Internet]. 2010;24(9):875 - 80. http://view.ncbi.nlm.nih.gov/pubmed/20439428PDF icon Pipsa Saharinen et al., Genes & Development 2010 (1.2 MB)PDF icon Pipsa Saharinen et al., Genes & Development 2010, supplement (9.15 MB)
Olofsson B, Jeltsch M, Eriksson U, Alitalo K. Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol [Internet]. 1999;10(6):528 - 35. http://view.ncbi.nlm.nih.gov/pubmed/10600689PDF icon Birgitta Olofsson et al., Current Opinion in Biotechnology 1999 (577.33 KB)
Krebs R, Jeltsch M. Die lymphangiogenic growth factors VEGF-C and VEGF-D. Part 2: The role of VEGF-C and VEGF-D in diseases of the lymphatic system. [bilingual: English, German]. Lymphologie in Forschung und Praxis [Internet]. 2013;17(2):96 - 104. http://jeltsch.org/sites/jeltsch.org/files/JeltschMichael_Lymphforsch2013_96.pdfPDF icon Krebs & Jeltsch (2013): The lymphangiogenic growth factors VEGF-C and VEGF-D. Part 2: The role of VEGF-C and VEGF-D in diseas... (3.88 MB)PDF icon Krebs & Jeltsch (2013): Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D. Teil 2. Die Rolle von VEGF-C und VEGF-D bei ... (2.6 MB)
Tammela T, He Y, Lyytikkä J, Jeltsch M, Markkanen J, Pajusola K, ym.. Distinct architecture of lymphatic vessels induced by chimeric vascular endothelial growth factor-C/vascular endothelial growth factor heparin-binding domain fusion proteins. Circ Res [Internet]. 2007;100(10):1468 - 75. http://view.ncbi.nlm.nih.gov/pubmed/17478733PDF icon Tuomas Tammela et al., Circulation Research 2007 (1.1 MB)
Tvorogov D, Anisimov A, Zheng W, Leppänen V-M, Tammela T, Laurinavicius S, ym.. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell [Internet]. 2010;18(6):630 - 40. http://view.ncbi.nlm.nih.gov/pubmed/21130043PDF icon Denis Tvorogov et al., Cancer Cell 2010 (1.3 MB)PDF icon Denis Tvorogov et al., Cancer Cell 2010, supplement (828.69 KB)
Keskitalo S, Tammela T, Lyytikka J, Karpanen T, Jeltsch M, Markkanen J, ym.. Enhanced capillary formation stimulated by a chimeric vascular endothelial growth factor/vascular endothelial growth factor-C silk domain fusion protein. Circ Res [Internet]. 2007;100(10):1460 - 7. http://view.ncbi.nlm.nih.gov/pubmed/17478734PDF icon Salla Keskitalo et al., Circulation Research 2007 (1.98 MB)
Rauniyar K, Bokharaie H, Jeltsch M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis [Internet]. 2023;26(3):437 - 461. https://link.springer.com/10.1007/s10456-023-09874-9PDF icon Rauniyar et al. - 2023 - Expansion and collapse of VEGF diversity in major clades of the animal kingdom (3.59 MB)
Kärpänen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, ym.. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J [Internet]. 2006;20(9):1462 - 72. http://view.ncbi.nlm.nih.gov/pubmed/16816121PDF icon Terhi Kärpänen et al., FASEB Journal 2006 (2.51 MB)
Jeltsch M, Tammela T, Alitalo K, Wilting J. Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res [Internet]. 2003;314(1):69 - 84. http://view.ncbi.nlm.nih.gov/pubmed/12942362PDF icon Michael Jeltsch et al., Cell and Tissue Research 2003 (562.33 KB)
Chilov D, Kukk E, Taira S, Jeltsch M, Kaukonen J, Palotie A, ym.. Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem [Internet]. 1997;272(40):25176 - 83. http://view.ncbi.nlm.nih.gov/pubmed/9312130PDF icon Dmitry Chilov et al., The Journal of Biological Chemistry 1997  (517.68 KB)
Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, ym.. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science (80- ) [Internet]. 1997;276(5317):1423 - 5. http://view.ncbi.nlm.nih.gov/pubmed/9162011PDF icon Michael Jeltsch et al., Science 1997 (293.65 KB)
Hiltunen MO, Laitinen M, Turunen MP, Jeltsch M, Hartikainen J, Rissanen TT, ym.. Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation [Internet]. 2000;102(18):2262 - 8. http://view.ncbi.nlm.nih.gov/pubmed/11056103PDF icon Mikko Hiltunen et al., Circulation 2000 (1.44 MB)
Veikkola T, Lohela M, Ikenberg K, Mäkinen T, Korff T, Saaristo A, ym.. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J [Internet]. 2003;17(14):2006 - 13. http://view.ncbi.nlm.nih.gov/pubmed/14597670PDF icon Tanja Veikkola et al., FASEB Journal 2006 (598.77 KB)
Koistinen H, Künnapuu J, Jeltsch M. KLK3 in the Regulation of Angiogenesis—Tumorigenic or Not?. International Journal of Molecular Sciences [Internet]. 2021;22(24):13545. https://www.mdpi.com/1422-0067/22/24/13545PDF icon Koistinen et al. - 2021 - KLK3 in the Regulation of Angiogenesis—Tumorigenic or Not? (1.28 MB)
Jha SK, Rauniyar K, Chronowska E, Mattonet K, Maina EW, Koistinen H, ym.. KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D. eLife [Internet]. 2019;8:e44478. https://elifesciences.org/articles/44478PDF icon Jha & Rauniyar et al. 2019 (3.84 MB)
Krebs R, Jeltsch M. The lymphangiogenic growth factors VEGF-C and VEGF-D. Part 1: Basic principles and embryonic development. [bilingual: English, German]. Lymphologie in Forschung und Praxis [Internet]. 2013;17(1):30 - 37. http://jeltsch.org/sites/jeltsch.org/files/JeltschMichael_Lymphforsch2013_30.pdfPDF icon Krebs & Jeltsch (2013): The lymphangiogenic growth factors VEGF-C and VEGF-D. Part 1: Fundamentals and embryonic development. (2.08 MB)PDF icon Krebs & Jeltsch (2013): Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D. Teil 1. Grundlagen und Embryonalentwicklung. (1.82 MB)
Gucciardo E, Lehti TA, Korhonen A, Salvén P, Lehti K, Jeltsch M, ym.. Lymphatics and the eye. [Finnish]. Duodecim Lääketieteellinen Aikakauskirja [Internet]. 2020;136(16):1777-1788. https://www.duodecimlehti.fi/lehti/2020/16/duo15739PDF icon Gucciardo et al. Lymphatics and the Eye (English version). (3.31 MB)
Jeltsch M, Alitalo K. Lymphatic-to-blood vessel transdifferentiation in zebrafish. Nature Cardiovascular Research [Internet]. 2022;1(6):539 - 541. https://rdcu.be/cOjJ0

Sivut