Biblio

Szerző Cím [ Típus(Desc)] Év
Szűrők: Szerző is Alitalo, Kari  [Minden szűrő visszaállítása]
Book Chapter
The TIE Receptor Family. In Receptor Tyrosine Kinases: Family and Subfamilies [Internet]. Springer International Publishing; 2015. o 743-775. https://link.springer.com/content/pdf/10.1007%2F978-3-319-11888-8_16.pdf
VEGF Receptors. In Sigma-RBI Handbook of Receptor Classification and Signal Transduction [Internet]. 5.th ed Sigma; 2006. http://www.sigmaaldrich.com/technical-documents/articles/biology/rbi-handbook.htmlPDF ikon Sigma-RBI Handbook of Receptor Classification and Signal Transduction: VEGF Receptors (263.92 KB)
Journal Article
Anisimov A, Alitalo A, Korpisalo P, Soronen J, Kaijalainen S, Leppänen V-M, et al.. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res [Internet]. 2009;104(11):1302 - 12. http://view.ncbi.nlm.nih.gov/pubmed/19443835PDF ikon Andrey Anisimov et al., Circulation Research 2009 (8.03 MB)PDF ikon Andrey Anisimov et al., Circulation Research 2009, supplement (5.9 MB)
Saaristo A, Veikkola T, Enholm B, Hytönen M, Arola J, Pajusola K, et al.. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J [Internet]. 2002;16(9):1041 - 9. http://view.ncbi.nlm.nih.gov/pubmed/12087065PDF ikon Anne Saaristo et al., FASEB Journal 2002 (966.08 KB)
The basis for the distinct biological activities of vascular endothelial growth factor receptor-1 ligands. Sci Signal. 2013;6(282):ra52. PDF ikon Anisimov 2013 Science Signaling (1.92 MB)PDF ikon Anisimov 2013 Science Signaling Supplement (2.09 MB)
CCBE1 enhances lymphangiogenesis via ADAMTS3-mediated VEGF-C activation. Circulation [Internet]. 2014;129(19). http://circ.ahajournals.org/content/early/2014/02/19/CIRCULATIONAHA.113.002779.abstractPDF ikon Postprint of Jeltsch et al. 2014 (Circulation): CCBE1 enhances lymphangiogenesis via ADAMTS3-mediated VEGF-C activation (6.6 MB)PDF ikon Postprint of Jeltsch et al. 2014 (Circulation): CCBE1 enhances lymphangiogenesis via ADAMTS3-mediated VEGF-C activation (Suppl.) (2.38 MB)PDF ikon Published version of Jeltsch et al. 2014 (Circulation): CCBE1 enhances lymphangiogenesis via ADAMTS3-mediated... (incl. suppl.) (23.21 MB)
Saharinen P, Helotera H, Miettinen J, Norrmen C, D'Amico G, Jeltsch M, et al.. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev [Internet]. 2010;24(9):875 - 80. http://view.ncbi.nlm.nih.gov/pubmed/20439428PDF ikon Pipsa Saharinen et al., Genes & Development 2010 (1.2 MB)PDF ikon Pipsa Saharinen et al., Genes & Development 2010, supplement (9.15 MB)
Tammela T, He Y, Lyytikkä J, Jeltsch M, Markkanen J, Pajusola K, et al.. Distinct architecture of lymphatic vessels induced by chimeric vascular endothelial growth factor-C/vascular endothelial growth factor heparin-binding domain fusion proteins. Circ Res [Internet]. 2007;100(10):1468 - 75. http://view.ncbi.nlm.nih.gov/pubmed/17478733PDF ikon Tuomas Tammela et al., Circulation Research 2007 (1.1 MB)
Tvorogov D, Anisimov A, Zheng W, Leppänen V-M, Tammela T, Laurinavicius S, et al.. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell [Internet]. 2010;18(6):630 - 40. http://view.ncbi.nlm.nih.gov/pubmed/21130043PDF ikon Denis Tvorogov et al., Cancer Cell 2010 (1.3 MB)PDF ikon Denis Tvorogov et al., Cancer Cell 2010, supplement (828.69 KB)
Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Scientific Reports [Internet]. 2017;7(1):4916. https://www.nature.com/articles/s41598-017-04982-1
Keskitalo S, Tammela T, Lyytikka J, Karpanen T, Jeltsch M, Markkanen J, et al.. Enhanced capillary formation stimulated by a chimeric vascular endothelial growth factor/vascular endothelial growth factor-C silk domain fusion protein. Circ Res [Internet]. 2007;100(10):1460 - 7. http://view.ncbi.nlm.nih.gov/pubmed/17478734PDF ikon Salla Keskitalo et al., Circulation Research 2007 (1.98 MB)
Functional Dissection of the CCBE1 Protein: A Crucial Requirement for the Collagen Repeat Domain. Circ Res [Internet]. 2015;116(10):1660-1669. http://circres.ahajournals.org/content/116/10/1660.long
Functional Importance of a Proteoglycan Co-Receptor in Pathologic Lymphangiogenesis. Circulation Research [Internet]. 2016;119(2):210-221. http://circres.ahajournals.org/content/early/2016/05/25/CIRCRESAHA.116.308504PDF ikon Johns et al. 2016: Functional Importance of a Proteoglycan Co-Receptor in Pathologic Lymphangiogenesis (3.69 MB)PDF ikon Johns et al. 2016: Functional Importance of a Proteoglycan Co-Receptor in Pathologic Lymphangiogenesis: Supplemental Data (3.3 MB)
Kärpänen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, et al.. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J [Internet]. 2006;20(9):1462 - 72. http://view.ncbi.nlm.nih.gov/pubmed/16816121PDF ikon Terhi Kärpänen et al., FASEB Journal 2006 (2.51 MB)
Jeltsch M, Tammela T, Alitalo K, Wilting J. Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res [Internet]. 2003;314(1):69 - 84. http://view.ncbi.nlm.nih.gov/pubmed/12942362PDF ikon Michael Jeltsch et al., Cell and Tissue Research 2003 (562.33 KB)
Veikkola T, Lohela M, Ikenberg K, Mäkinen T, Korff T, Saaristo A, et al.. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J [Internet]. 2003;17(14):2006 - 13. http://view.ncbi.nlm.nih.gov/pubmed/14597670PDF ikon Tanja Veikkola et al., FASEB Journal 2006 (598.77 KB)
Jha SKumar, Rauniyar K, Chronowska E, Mattonet K, Maina EWairimu, Koistinen H, et al.. KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D. eLife [Internet]. 2019;8:e44478. https://elifesciences.org/articles/44478PDF ikon Jha & Rauniyar et al. 2019 (3.84 MB)
Karpanen T, Bry M, Ollila HM, Seppänen-Laakso T, Liimatta E, Leskinen H, et al.. Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ Res [Internet]. 2008;103(9):1018 - 26. http://view.ncbi.nlm.nih.gov/pubmed/18757827PDF ikon Terhi Kärpänen et al., Circulation Research 2008 (898.27 KB)PDF ikon Terhi Kärpänen et al., Circulation Research 2008, supplement (1.56 MB)
Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, et al.. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest [Internet]. 2005;115(2):247 - 57. http://view.ncbi.nlm.nih.gov/pubmed/15668734PDF ikon Peter Baluk et al., Journal of Clinical Investigation 2005 (1.89 MB)
Receptor Tyrosine Kinase-Mediated Angiogenesis. Cold Spring Harbor Perspectives in Biology [Internet]. 2013;5(9). http://cshperspectives.cshlp.org/content/5/9/a009183PDF ikon Jeltsch et al. (2013): Tyrosine Kinase-Mediated Angiogenesis. CSH Persp Biol (934.46 KB)
Li X, Tjwa M, Van Hove I, Enholm B, Neven E, Paavonen K, et al.. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol [Internet]. 2008;28(9):1614 - 20. http://view.ncbi.nlm.nih.gov/pubmed/18511699PDF ikon Xuri Li et al., Arteriosclerosis, Thrombosis, and Vascular Biology 2008 (738.26 KB)PDF ikon Xuri Li et al., Arteriosclerosis, Thrombosis, and Vascular Biology 2008, data supplement (1012.6 KB)
Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2013;110(32):12960 - 12965. http://www.pnas.org/content/110/32/12960.long
Leppänen V-M, Prota AE, Jeltsch M, Anisimov A, Kalkkinen N, Strandin T, et al.. Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2010;107(6):2425 - 30. http://view.ncbi.nlm.nih.gov/pubmed/20145116PDF ikon Veli-Matti Leppänen et al. PNAS 2010 (1 MB)PDF ikon Veli-Matti Leppänen et al. PNAS 2010, supporting information (2.23 MB)
Leppänen V-M, Jeltsch M, Anisimov A, Tvorogov D, Aho K, Kalkkinen N, et al.. Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood [Internet]. 2011;117(5):1507 - 15. http://view.ncbi.nlm.nih.gov/pubmed/21148085PDF ikon Veli-Matti Leppänen & Michael Jeltsch et al., Blood 2011 (1.17 MB)PDF ikon Veli-Matti Leppänen & Michael Jeltsch et al. Blood 2011, supplementary data (342.97 KB)
Albrecht I, Kopfstein L, Strittmatter K, Schomber T, Falkevall A, Hagberg CE, et al.. Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis. PLoS ONE [Internet]. 2010;5(11):e14109. http://view.ncbi.nlm.nih.gov/pubmed/21124841PDF ikon Imke Albrecht et al., PLoS One 2010 (3.37 MB)

Oldalak