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Summary

The enzymatic cleavage of the protein
backbone (proteolysis) is integral to many
biological processes, e.g. for the break-
down of proteins in the digestive system.
Specific proteolytic cleavages are also used
to turn on or off the activity of proteins. For
example, the lymphangiogenic vascular
endothelial growth factor-C (VEGF-C) is
synthesized as a precursor molecule that
must be converted to a mature form by the
enzymatic removal of C- and N-terminal
propeptides before it can bind and activate
its receptors. The constitutive C-terminal
cleavage is mediated by proprotein con-
vertases such as furin. The subsequent ac-
tivating cleavage can be mediated by at
least four different proteases: by plasmin,
ADAMTS3, prostate-specific antigen (PSA)
and cathepsin D. Processing by different
proteases results in distinct forms of "ma-
ture" VEGF-C, that differ in their affinity and
their receptor activation potential. This
processing is tightly regulated by the
CCBE1 protein. CCBE1 regulates the acti-
vating cleavage of VEGF-C by ADAMTS3
and PSA, but not by plasmin. During em-
bryonic development of the lymphatic sys-
tem, VEGF-C is activated primarily by the
ADAMTS3 protease. In contrast, it is be-
lieved that plasmin is responsible for
wound healing lymphangiogenesis and
PSA for tumor-associated pathological lym-
phangiogenesis. Cathepsin D has also been
implicated in tumor lymphangiogenesis. In
addition, cathepsin D in saliva might acti-
vate latent VEGF-C upon wound licking,
thereby accelerating wound healing. The
molecular details of proteolytic activation
of VEGF-C are only recently extensively ex-
plored, and we likely do not know yet all
activating proteases. It appears that the ac-
tivity of VEGF-C is regulated for different
specific functions by different proteinases.
Although VEGF-C clearly plays a pivotal
role for tumor progression and metastasis
in experimental animal studies, the rele-
vance of most correlative studies on the
role of VEGF-C in human cancers is quite li-
mited until now, also due to the lack of
methods to differentiate between inactive
and active forms.
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Die proteolytische Aktivierung des Vas-
kularen Endothelzellwachstumsfaktors-C
Zusammenfassung

Enzymatische Schnitte der Polypeptidkette
von Proteinen sind Bestandteil vieler biolo-
gischer Prozesse, so z.B. bei der Zerlegung
von Proteinen wahrend der Verdauung.
Gezielte enzymatische Schnitte werden
auch benutzt, um die Aktivitat bestimmter
Proteine ein- oder auszuschalten. So z.B
wird der lymphangiogene Vaskuldre En-
dothelzellwachstumsfaktor-C (VEGF-C) als
Vorldufermolekiil ~ synthetisiert, welches
durch die enzymatische Entfernung von
Teilen des Proteins in eine aktive Form
umgewandelt werden muss, bevor es seine
Rezeptoren binden und aktivieren kann.
Dabei werden C- und N-terminale Propep-
tide von VEGF-C entfernt. Die konstitutive
C-terminale Spaltung wird durch Propro-
teinkonvertasen wie Furin vermittelt. Die
darauffolgende, aktivierende Spaltung
kann durch mindestens vier verschiedene
Proteasen vermittelt werden: Plasmin,
ADAMTS3, prostata-spezifisches Antigen
(PSA) und Cathepsin D. Resultierend aus
der Prozessierung durch unterschiedliche
Proteasen entstehen unterschiedliche,
“reife” VEGF-C-Formen, die sich in ihrer Affi-
nitdat und ihrem Rezeptor-Aktivierungspo-
tential unterscheiden. Das CCBE1-Protein
reguliert die Prozessierung von VEGF-C
durch ADAMTS3 und PSA, aber nicht die
durch Plasmin. Wahrend des physiologis-
chen Wachstums des Lymphgefa3systems
in der Embryonalentwicklung wird VEGF-C
hauptséchlich durch die ADAMTS3-Pro-
tease aktiviert. Im Unterschied dazu wird
vermutet, dass Plasmin fir die Wund-
heilung und PSA fir die mit Tumorwachs-
tum assoziierte, pathologische Lymphan-
giogenese verantwortlich ist. Cathepsin D
wurde ebenfalls mit der Tumor-Lymphan-
giogenese in Verbindung gebracht; dari-
berhinaus konnte das im Speichel enthal-
tene Cathepsin D, durch Wundlecken, la-
tentes VEGF-C aktivieren und dadurch die
Wundheilung beschleunigen. Die moleku-
laren Details der proteolytischen Aktivier-
ung von VEGF-C werden erst seit kurzer
Zeit intensiv erforscht und wahrscheinlich
sind noch nicht alle aktivierenden Protea-
sen bekannt. Jedoch scheint es, dass die

Aktivitat von VEGF-C fir verschiedene spe-
zifische Funktionen von unterschiedlichen
Proteinasen reguliert wird. Obwohl VEGF-C
in experimentellen Tierversuchen eine zen-
trale Stellung in der Tumorprogression und
-metastasierung einnimmt, ist die Aus-
sagekraft der bisherigen korrelativen Stu-
dien zur Rolle von VEGF-C bei Tumorer-
krankungen des Menschen begrenzt.
Dieser Umstand ist nicht zuletzt in den
fehlenden Mdglichkeiten begriindet, zwis-
chen der inaktiven und den aktiven For-
men zu unterscheiden.

Schliisselworter: VEGF-C, Lymphangio-
genese, Proteinasen, Proteolyse

List of Abbreviations

ADAM A Disintegrin- and Metalloproteinase
A Disintegrin- and Metalloproteinase

LIRS with Thrombospondin Motifs-3

(atD (athepsin D
Collagen- and Calcium-Binding EGF

(CBE1 ) . ;
domain-containg protein 1

ELISA Enzyme-Linked Immunosorbent Assay

ECM Extracellular Matrix

HS Hennekam Syndrome

HSPG Heparansulfate Proteoglykan

KLIG Kallikrein-related Peptidase 3
(synonymous with PSA)

MMP-3 Matrix-Metalloproteinase-3

PSA Prostata-Specific Antigen

TGF-B Transforming Growth Factor-f

VEGF-A Vascular Endothelial Growth Factor-A,
often simply referred to as “VEGF”

VEGF-C, -D Vascular Endothelial Growth Factor-C, -D

VEGFR VEGF Receptor

VHD VEGF Homology Domain

LymphForsch 23 (2) 2019



H)

Figure 1

Proteolysis. The hydrolytic cleavage of a peptide bond
(orange) of a protein (blue background) into two
fragments (red background). The peptide bonds of the
protein backbone are shown as thick lines. The amino
acid side chains are symbolized as green circles. Without
enzymatic catalysis by proteinases this chemical
reaction is extremely slow.
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Proteinases (protein
cleaving enzymes)

Proteinases (or proteases)
are enzymes that cleave pro-
teins by hydrolysing the
peptide bonds of the protein
backbone (Figure 1). They oc-
cur inside (intracellular) and
outside (extracellular) of cells,
and are essential for a multi-
tude of cell and body func-
tions. For example, proteinases
process antigens in the course
of an immune reaction for
antigen  presentation, they
break down damaged or unne-
cessary proteins (e.g. in lyso-
somes) and they digest food
proteins in the gastrointestinal
tract. In the stomach, for
example, pepsin is generated
from the precursor pepsinogen
by autoproteolysis at a low pH,
and in the intestine, trypsin is

VEGFR-1
VEGFR-2
blood

vessel

The growth factors VEGF-A, VEGF-C and VEGF-D and their receptors. The growth and
function of blood and lymphatic vessels is controlled by Vascular Endothelial Growth Factors
(VEGFs). VEGF-A is the quintessential growth factor for blood vessels, while VEGF-C is the
quintessential growth factor for lymphatic vessels. VEGF-A is recognised by VEGF receptor-1 (VEGFR-
1) and VEGF receptor-2 (VEGFR-2). VEGF-C and VEGF-D are recognised by VEGF receptor-3 (VEGFR-3)
and, under certain circumstances, also by VEGFR-2. VEGFR-1 is largely specific for endothelial cells of
blood vessels and VEGFR-3 for endothelial cells of lymphatic vessels. In contrast, VEGFR-2 is found on
both vessel types. If, for example, active VEGF-C or VEGF-D binds to VEGFR-3 on the lymphatic
endothelial cell surface, the signal is transduced into the cell nucleus, where it provokes a
proliferative and migratory response, thus initiating vessel growth.

LymphForsch 23 (2) 2019

REVIEW ARTICLES

generated from the precursor trypsi-
nogen by autocatalysis.

Activation of proteins

Many proteins are produced as
inactive precursors and are activated
by proteolytic cleavage when their
function is required. The proteinases
themselves are also produced as in-
active pro-proteinases and must be ac-
tivated by proteolytic removal of their
propeptides. This is of uppermost im-
portance, since the uncontrolled acti-
vity of proteinases would otherwise de-
stroy cells and decompose the extracel-
lular matrix (ECM).

The perhaps best known proteolyti-
cally controlled processes include
blood coagulation, the limitation of
blood clotting and its reversal, i.e. the
dissolution of blood clots [1,2]. Many
bood clotting factors are proteinases,
which in turn activate other proteina-
ses, etc. ("proteolytic cascade") to cata-
lyze the proteolytic conversion of solu-
ble fibrinogen into polymerizing fibrin
in the final step of the blot clotting cas-
cade.

Activation of growth factors

Many growth factors and also some
cytokines are produced as inactive pre-
cursors, which only become active
through proteolytic cleavage (“proces-
sing”). Among the better known
growth factors that are activated
through proteolytic cleavage are e.g.
the Transforming Growth Factor-f
(TGF-B)[3], but also the lymphangio-
genic growth factors VEGF-C and
VEGE-D. Many studies have analyzed
the mechanisms and the regulation of
VEGF receptor activation by VEGFs
[4], whereas relatively little is known
about the upstream processes of mobi-
lisation and activation of VEGFs.

The VEGF family

The biology of the growth factors
VEGF-C and VEGF-D has been de-
scribed in detail in a previous review
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Schematic representation of the domain organisation of VEGF growth factors using VEGF-
C/D and VEGF-A as examples. The VEGF growth factors consist of the central VEGF homology
domain (in grey) and optional accessory domains (in blue and magenta). The proteolytic cuts
usually take place between the domains (in red). The characteristic cysteine patterns of the VEGF
family and the C-terminal propeptide are represented by yellow and white lines, respectively.

[5]. For this reason, only a short intro-
duction follows, in which the relevant
properties and characteristics of
VEGF-C and VEGE-D are explained.
VEGF-C and VEGF-D belong to the
VEGF family (see also Figure 2 for a
graphical short overview of VEGF-A,
VEGF-C, VEGE-D and their recep-
tors).

Characteristic for the members of
the VEGF family is the VEGF Homo-
logy Domain (VHD) as the central and
dominant structural element. This
domain is almost 100 amino acids long
and has a characteristic arrangement of
eight cysteine (C) amino acid residues
(CX,,CPXCVX,RCXGCCX,CX;, 55,CXC),
which form disulfide bridges among
themselves and thereby give the
VEGFs a very stable core. This core
also forms the receptor binding epi-
tope and thus determines to which of
the three VEGF receptors (-1, -2 and
-3) a VEGF binds. In addition to this
core, most VEGFs have other domains
that are either upstream (N-terminal)
or downstream (C-terminal) from the
VHD (Figure 3). These additional do-
mains give VEGFs the ability to inter-
act with other binding partners.

For example, different isoforms of
VEGF-A have C-terminal heparin bin-
ding domains of varying strength, with
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which they bind heparan sulfate pro-
teogycans. This variation in binding
strength causes a more or less promi-
nent immobilization on cell surfaces
and the extracellular matrix (ECM),
which in turn results in distinct activity
profiles of the isoforms. Proteases such
as plasmin can convert the longer
ECM-bound VEGF-A isoforms into
shorter, more diffusible isoforms [6,7].
Cleavage by different matrix metallo-
proteinases (MMPs), especially MMP-
3, converts e.g. the main isoform
VEGF-A,; into a shorter, non-heparan
sulfate-binding isoform [8].
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The C-terminal domain of
VEGF-C

Similar to VEGF-A, VEGF-C and
VEGEF-D are also immobilized on cell
surfaces and the ECM via their C-ter-
minal domain [9]. In contrast to all
other VEGF family members, the C-
terminal domain of VEGF-C and
VEGF-D blocks the growth factor acti-
vity [10]. Most likely, this domain ste-
rically hinders access to the receptor
binding site. This assumption would
also explain why the C-terminal do-
main of VEGF-C is almost twice as
large as its VHD. The origin of the pro-
tein sequence of the C-terminal do-
main is mysterious, since no homolo-
gous sequences seem to exist in the ge-
nomes of vertebrates. Homologous
proteins are, however, found in the sa-
livary secretions of some silkworm
mosquito larvae, e.g. Chironomus
tentans [11]. For this reason, this do-
main has also been called silk homo-
logy domain, although its amino acid
sequence is unrelated to the classical
silk proteins.

Hypoxia regulates angio-
genesis, but how is lym-
phangiogenesis regulated?

VEGF-A, which is mainly responsi-
ble for the formation of blood vessels,
is tightly regulated at the transcriptio-
nal level. If the oxygen supply to a

Growth

Inflammation ﬁ

Lymphangiogenesis Immunomodulation

P P

Drainage —/

Schematic representation of known control loops in angiogenesis and

lymphangiogenesis.

The production of VEGF-A and VEGF-C is usually self-limiting due to negative feedback. As soon as a
sufficient oxygen supply has been established or the tissue pressure normalized, the signaling for

blood vessel or lymphatic growth is reduced.
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tissue is insufficient (hypoxia),
production of VEGF-A is switched on,
which in turn leads to blood vessel
growth and normalisation of the oxy-
gen pressure [12]. In contrast, VEGF-C
production hardly improves tissue
oxygenation, but it does improve tissue
drainage and immune cell trafficking
(see Figure 4). Presumably for this rea-
son and in contrast to VEGF-A, the
production of VEGEF-C is controlled by
proinflammatory signals and not or
only insignificantly by hypoxia [13-15].
In addition, VEGF-C can contribute to
the limitation of inflammatory re-
actions by increased drainage [16,17]
and immunomodulation [18]. VEGF-
C also plays a vital role for the lymph
vessels of the small intestinal villi
(lacteals). These in fat absorption spe-
cialised vessels require for their main-
tanance the permanent stimulation by
VEGEF-C [19], which is produced by
macrophages in response to the micro-
bial intestinal flora [20].

Increased interstitial tissue pressure
amplifies the growth of lymph vessels
via the pressure-dependent signal
transduction of VEGF receptor-3 (me-
chanotransduction) mediated by [1
integrin and integrin-linked kinase
(ILK), thereby normalising tissue pres-
sure [21,22]. Whether tissue pressure
also has an influence on VEGF-C pro-
duction or activation is not known yet.

During embryonic develop-
ment VEGF-C is activated by
ADAMTS3

Mutations in the Collagen- and Cal-
cium-Binding EGF domain-containg
protein 1 (CCBE1) gene are responsi-
ble for the systemic lymphatic dys-
plasia in Hennekam Syndrome Type I
[25]. CCBE1 regulates the proteinase
ADAMTS3, which is the primary pro-
teinase that activates VEGF-C during
embryonic  growth  [26,27].  The
ADAMTS proteinases are cell surface
or ECM-localized multidomain en-
zymes closely related to the ADAM
proteinases. In contrast to the mem-
brane-bound ADAM proteinases, the
ADAMTS proteinases are secreted and
contain one or more repeats of the
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¢ 2. cleavage (furin)

mainly intracellular

3. cleavage (plasmin, ADAMTS3, KLK3/PSA, cathepsin D)
extracellular

4. cleavage (secondary activation by
cathepsm D or inactivation by plasmin)
extracellular

Schematic representation of the proteolytic activation of VEGF-C. VEGF-C is synthesized as a
precursor with a size of 58 kDa. This unprocessed form (also called ‘prepro-VEGF-C") is more than
twice as large as the mature VEGF-C and, after the signal peptide has been cleaved off during
transport into the endoplasmic reticulum, is converted into pro-VEGF-C in the trans-Golgi network
by the proprotein convertases PC5, PC7 and especially furin. This occurs by cleaving the polypeptide
chain C-terminally to the VHD (marked by a yellow triangle). If furin is blocked, unprocessed VEGF-C
is not converted into pro-VEGF-C [23]. Pro-VEGF-C can bind but not activate VEGFR-3 and therefore
acts as a competitive inhibitor of active VEGF-C, which has been shown both in vitro and in vivo [24].
Only a further proteolytic cut N-terminally of the VHD (marked by red triangles) converts pro-VEGF-C
into the biologically active form. Mature VEGF-C has by far the highest affinity for the binding and
activation of VEGFR -2 and -3 [10]. Unprocessed VEGF-C is hardly detectable in the cell culture
supernatant and probably occurs physiologically only inside the cell [10].

thrombospondin type 1 motif. Some
functions of this protein family, such as
procollagen processing or proteoglycan
cleavage, have been linked to the regu-
lation of angiogenesis [28]. Due to its
structure, ADAMTS3 belongs together
with ADAMTS2 and ADAMTS14 to
the procollagenase group [29] and also
cleaves, at least in vitro, procollagen N-
propeptide [30].

If the function of ADAMTS2 is mu-
tationally impaired, proteolytic col-
lagen maturation is disturbed and a
connective tissue defect is the conse-
quence (Ehlers-Danlos syndrome, der-
matosparaxis type) [31]. In contrast,
patients without or with compromised
ADAMTS3 genes show no deficits in
collagen synthesis, but distinct defects
in the development of the lymphatic
system [32,33].

Although the biosynthesis of VEGF-
D is very similar to that of VEGF-C
(shown schematically in Figure 5) [34],
ADAMTS3 cannot activate VEGF-D
[26,35]. And, notably, none of the
other procollagenases of the ADAMTS
family (ADAMTS2 and ADAMTS14)
do activate VEGF-C [26].

Activation of VEGF-Cin
wound healing by plasmin
and cathepsin D

The restoration of oxygen supply and
immune function through blood and
lymph vessels are paramount for
wound healing. An acceleration of
wound healing by VEGF-C was first
observed in animal experiments in
2004 [36,37]. When platelets are acti-
vated, VEGF-C is released from the a-
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Schematic representation of the proteolytic processing sites in the amino acid sequences
of VEGF-C and VEGF-D. The activation of VEGF-C and VEGF-D is achieved by proteolytic cleavage
of the protein between the N-terminal domain and the VEGF homology domain. The further C-
terminally (in the figure to the right) the cleavage of VEGF-C occurs, the lower the biological activity
of the resulting VEGF-C form [42]. The cleavage of VEGF-C by plasmin within the VEGF homology
domain leads to a complete inactivation of VEGF-C [26]. Alternatively, VEGF-C can also be
inactivated through sequesteration by soluble isoforms of its receptors [44]. Figure 6 was modified

under the Creative Commons license from [42].

granules [38]. Plasmin, which is later
involved in the dissolution of the tem-
porary fibrin matrix [39], probably ac-
tivates both platelet-derived VEGE-C
and latent VEGF-C (pro-VEGEF-C
which was embedded in the extracellu-
lar matrix [40, 41]).

Cathepsin D is another activator of
VEGEF-C [42]. Accelerated wound hea-
ling by saliva [43] can perhaps be part-
ly attributed to the activation of
VEGF-C by Cathepsin D, which is
found in saliva. However, many other
enzymes are released during wound
healing which have a fairly broad sub-
strate specificity, e.g. MMP-3, and
which may contribute to the activation
of VEGF-C as well as to the release/ac-
tivation of ECM-sequestered (inactive)
VEGF-A.

Activation of VEGF-C by
prostate specific antigen
(PSA, KLK3)

Somewhat surprisingly, but not enti-
rely unanticipated [45], it turned out
that PSA (prostate specific antigen),
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which is controversially used in pro-
state cancer screening, can activate
VEGEF-C [42]. Despite being the most
frequently used blood test for early
cancer detection, it is less well known
that PSA is a proteinase whose main

1
termina

Figure 7

biological task is to liquefy the gel-like
consistency of the male ejaculate,
which allows the sperm cells to swim
[46].

VEGF-A had been detected in semi-
nal fluid more than 20 years ago
[47,48], and was later shown to have a
positive effect on the motility of sper-
matozoa [49]. However, only recently it
was recognized that also VEGF-C is
present in the male ejaculate and that
the activation of this seminal VEGF-C
occurs concurrently with the liquefac-
tion of the ejaculate by PSA [42].
Whether seminal VEGF-C is an epi-
phenomenon or has any function for
reproduction has not yet been clarified.
VEGF-C is certainly required for the
implantation of the embryo into the
endometrium, where it acts on the
blood vessels [33]. However, VEGF-C
could also play a role in the implanta-
tion-associated immune modulation
[50] or it might - as already described
for VEGF-A [49] - have a direct che-
motactic or chemokinetic effect on
spermatozoa.

The key position of CCBE1 as

cofactor of activation

When it is important to react quickly
to changing demands, regulation at the

domain

-

Schematic representation of the hypothetical mechanism of action of CCBE1. The C-termi-
nal domain of pro-VEGF-C (dark blue) blocks the access of enzymes to proteolytically sensitive se-
quences (shown on the left half of the dimer). CCBET causes a conformational change in VEGF-C
and thus exposes the proteolytic target site (shown on the right half of the dimer). The CCBE effect
on VEGF-C activation has been demonstrated for ADAMTS3 and KLK3/PSA, and it is suspected for
Cathepsin D. After the activation of VEGF-C, e.g. at the primary interface of plasmin (#1), Cathepsin
D can shorten the protein with an additional cut (“secondary activation’). The shorter the N-termi-
nal end of active VEGF-C, the weaker it binds to and activates its receptors. With a proteolytic cut at
the secondary plasmin cleavage site (#2), VEGF-C loses all activity towards VEGFR-2 and VEGFR-3.
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gene expresion level introduces a delay
due to the upstream processess of
transcription and translation. The pro-
duction and on-demand activation of
inactive ("latent”) VEGF-C bypasses
this delay. A similar form of storage
and activation is known e.g. from
TGEF-B [51]. The heparin-binding iso-
forms of VEGF-A are also reversibly
inactivated by binding to extracellular
proteins and can be reactivated if re-
quired, e.g. by plasmin-mediated pro-
teolytic cleavage [6]. A summary of all
previously published VEGF-C activa-
ting enzymes and the exact positions of
the cleavage sites is shown in Figure 6.

The CCBEl protein regulates the
VEGF-C-activating function of the
ADAMTS3 proteinase. CCBELI consists
of two domains: the N-terminal do-
main, which is formed by three EGF-
like repreats, and the C-terminal do-
main. which consists of two collagen
motifs. Both domains are able to acce-
lerate the activation of VEGF-C by
ADAMTS3 independently. The N-ter-
minal domain of CCBEL is responsible
for the colocalization of VEGF-C and
ADAMTS3 with CCBEI to form the
activation complex, and the C-termi-
nal domain accelerates the catalytic
cleavage of VEGF-C by ADAMTS3
[40]. Presumably, CCBE1 removes the
masking of the proteolytic target site of
VEGEF-C, which is normally blocked
by its own C-terminal domain (Figure
7). The different activation paths of
VEGEF-C with regard to the localisation
of the activation complex are explained
in Figure 8.
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The different activation paths of VEGF-C. The proteolytic cleavage of pro-VEGF-C by ADAMTS3
activates and mobilizes VEGF-C. The activation of VEGF-C can take place in four different settings:
1. activation of VEGFR-3-bound pro-VEGF-C [26]

2. activation of HSPG-bound VEGF-C [9]

3. activation of VEGF-C in the soluble phase [35]

4. activation of ECM-bound VEGF-C [40].

VEGFR-3-bound but inactive VEGF-C can start signaling immediately after proteolytic activation
(activation mode 1), whereas HSPG-bound VEGF-C must first dissociate from the HSPG and
translocate to VEGFR-3 (activation mode 2). The activation of VEGF-C can also take place in the
soluble phase (activation mode 3). Immunohistochemically, however, the vast majority of pro-
VEGF-C, CCBET and ADAMTS3 are found bound to the extracellular matrix (ECM, activation mode
4) or on cell surfaces (activation modes 1 and 2). CCBET1 fulfills two independent functions for
VEGF-C activation: the C-terminal domain accelerates the proteolytic cleavage, while the N-
terminal domain recruits pro-VEGF-C to efficiently form the trimeric activation complex. Figure 8
was modified under the Creative Commons license from [40].

Hennekam Syndrome (HS) is a rare
congenital disease with a generalized
lymphedema as its main feature. At

first, mutations in the CCBEl gene
were identified as the cause, but mean-
while, mutations

Proteinase (leavage site

Plasmin (primary cleavage site) Arg102 ¢ Thr103
ADAMTS3 Ala1111Ala112
KLK3/PSA Tyr1141Asn115
(athepsin D Leu1191Lys120
Plasmin (secondary cleavage site) ~ Arg1271Lys128

Table 1

Remarks Activates the following receptors | Reference(s)

minor form, probably responsible for the activation of ~ VEGFR-2 [26,41]

VEGF-Cin wound healing VEGFR-3 !

main form, for [ymphangiogenesis during embryonal ~ VEGFR-2

development, CCBE1- regulated VEGFR-3 [26,32,33,401
. . . . VEGFR-2

activates VEGF-Cin seminal fluid, CCBE1- regulated VEGFR-3 [42]

found in seminal fluid and saliva preferentially VEGFR-3 [42]

inactive form [26]

Four proteinases are known in the literature as VEGF-C activators. Plasmin occupies a special position because it inactivates VEGF-C during

prolonged exposure by cutting at a secondary site.
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genes are known to trigger HS. The
function of two of these genes (CCBEI
and ADAMTS3) within the VEGF-C
signal transduction pathway is known.
It is assumed that the third gene
(FAT4) also has an important function
within the VEGF-C signal trans-
duction pathway.

Activation of VEGF-C in
tumours

VEGF-C and its activation are indis-
pensable for the development of the
lymphatic system [33,52], and in the
adult organism, at least some lym-
phatic networks need a constant supply
of VEGF-C for their maintenance [19].
To prevent lymphatic dysfunction, the
amount of active VEGF-C must be
precisely regulated. A degregulation
with severe consequences can e.g. be
triggered by tumors.

The relationship between VEGEF-A-
mediated blood vessel formation and
tumour growth has been well studied
and is also specifically blocked in anti-
angiogenic tumour therapy, e.g. by the
antibody drug bevacizumab (Avastin)
[53]. It has always been assumed that
the majority of tumours never become
clinically relevant because they do not
acquire the ability to stimulate blood
vessel growth [54]. Without switching
on VEGF-A production and without
the resulting vascularisation ("angio-
genic switch"), these tumours can ne-
ver grow larger than a few millimetres
because they lack sufficient oxygen and
nutrients [55,56].

However, tumours can produce not
only VEGF-A but also VEGF-C. The
effects of VEGF-C on tumour growth
occur at several levels:

1. VEGF-C can activate VEGFR-2
and thus replace VEGF-A as an angio-
genic factor [57].

2. VEGEF-C can stimulate VEGFR-3,
which is found particularly on newly
sprouting blood vessels in the tumour
vasculature [58].

3. Tumor cells themselves can ex-
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Gene therapy with AAVEGF-C. An increasingly popular therapy for breast cancer-associated
lymphedema is autologous lymph node transplantation [88,89]. In pre-clinical studies, the
treatment success (integration of the transplanted lymph node into the local lymphatic network)
could be improved by the simultaneous administration of VEGF-C [90]. With this strategy,
Lymfactin® has successfully completed Phase | clinical trials and is now in Phase Il. As a further
development of Lymfactin®, a simultaneous administration of VEGF-C with the VEGF-C-activating

ADAMTS3 and/or CCBET is being discussed.

press VEGF receptors and be stimula-
ted in an autocrine or paracrine
fashion by VEGEF-C [59].

4. VEGF-C can stimulate lymph ves-
sel growth and thus promote metas-
tasis [60-62].

Unlike for the blockade of VEGF-A,
there is no approved drug therapy for
the blockade of VEGF-C. This lack
might result from the fact that proteo-
lytic activation produces many differ-
ent forms of VEGF-C. Effective block-
ing would likely need to block all
forms of VEGF-C in addition to all
forms of VEGF-D, as VEGF-D can
provide similar signals for tumour
growth as VEGF-C [63].

Which proteinases activate VEGF-C
in tumour diseases has not yet been
experimentally investigated, but ca-
thepsin D and PSA are likely to play a
role for at least certain tumour types.
The expression of cathepsin D has long
been correlated with tumour metasta-
sis [64]. Although, in contrast to ca-

thepsin D, the correlation between
PSA and tumour development has
been studied much more intensively,
various studies have come to different
conclusions regarding a tumour-pro-
moting function of PSA [65-69]. Some
authors postulate that PSA promotes
early tumour growth but inhibits its
development in later stages [70]. In any
case, with the activation of VEGF-C by
cathepsin D and PSA, possible mecha-
nistic links have been identified, which
allows to experimentally address and
answer these and similar questions.

Pro-VEGF-C or active VEGF-C?

The vast majority of studies on the
role of VEGF-C in tumor growth de-
scribe the correlation of VEGF-C levels
with disease progression. However,
none of these studies distinguishes bet-
ween active, mature VEGF-C and in-
active pro-VEGF-C. This can be attri-
buted to the fact that pro-VEGE-C has
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only been known to be inactive since
2014 and that no commercially avail-
able test does distinguish between the
two forms. For RNA-based expression
analyses (e.g. Gene-Chip®, RNA-Seq)
such differentiation is essentially im-
possible, since all VEGF-C forms are
translated from the same mRNA trans-
cript of the VEGFC gene. A differentia-
tion of the different VEGF-C forms
could be achieved with an antibody-
based test (ELISA, Western blot), but
such a test has not been developed yet.
Moreover, the majority of commercial-
ly available antibodies against VEGF-C
are not even capable of detecting
VEGEF-C with the necessary sensitivity
[42]. Tt is therefore not surprising that
the research data are confusing.

Meanwhile, the number of clinical
studies that correlate VEGF-C expres-
sion of tumours with the course of the
disease has exceeded three hundred
(Pubmed  query:  https://mjlab.fi/
pubmed1). Some studies have found a
link between VEGF-C levels and di-
sease progression [71,72], while others
could not demonstrate such a link [73].
In any case, controlled animal experi-
ments mostly confirm the instrumen-
tal role of VEGF-C for tumour metas-
tasis [60,74,75], and molecular biologi-
cal mechanisms have also been identi-
fied for the relationship [76].

Activation of VEGF-C for
prolymphangiogenic thera-
pies

Although lymphedema can be
treated, the aim of research remains a
causal therapy, because lymph drainage
and bandaging only help to control the
symptoms of the underlying lymphatic
insufficiency. With Bestatin (Ubeni-
mex) and Lymfactin®, the first trials for
drug-based lymphedema therapies
have been started in the recent years.
However, the Bestatin studies of the US
company Eiger BioPharmaceuticals
have been discontinued in autumn
2018 after the second phase since
neither primary nor secondary objec-
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tives had been achieved [77]. In con-
trast, the phase 2 studies of Lymfactin’,
sponsored by the Finnish pharmaceu-
tical start-up Herantis, have just been
expanded [78]. The two drugs are
based on different mechanisms of ac-
tion. Following the observation that
the analgesic ketoprofen relieves
lymphedema symptoms in a mouse
model [79], the ketoprofen-like but
more specific Bestatin was selected for
clinical trials [80]. Ketoprofen and
Bestatin are non-steroidal anti-inflam-
matory drugs, and not much detail is
known about their influence on the
lymphatic system. In contrast, Lymfac-
tin® is a genetically engineered bio-
pharmaceutical that is based on the
body’s own VEGEF-C production after
administration of a recombinant ade-
noviral vector (AdVEGEF-C, see Figure
9), whose mechanism of action is well
researched [81-83]. Depending on the
area of application, the availability of
endogenous proteinases and CCBE1
for the activation of VEGF-C for
Lymfactin®/ AdVEGF-C could, how-
ever, be a limiting factor. In animal ex-
periments, e.g. muscle tissue reacted to
VEGEF-C-providing gene therapy only
with moderate lymphangiogenesis.
Only when VEGF-C was co-adminis-
tered with CCBE1 the lymphangioge-
nic response became strong [26].

Because the lymphatic system is im-
portant not only for drainage but also
for immunity, it is not surprising that
VEGEF-C has been identified as a phar-
macological target for several diseases
affecting the immune system. These in-
clude chronic inflammatory bowel di-
sease [84], psoriasis [85] and rheuma-
toid arthritis [17], but also neurodege-
nerative diseases such as multiple scle-
rosis and Alzheimer's disease [86].
Also intruiging, albeit controversial, is
a report about the successful therapy of
myocardial infarction in an animal
model with a single dose of VEGF-C
[87].

It should be noted that these pro-
lymphangiogenic applications pursue
an objective that is contrary to that of
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tumour therapy. In lymphedema and
immune diseases, the typical goal is to
increase expression and activation of
VEGE-C, whereas in tumour therapy,
the goal is to block VEGF-C expression
or activation. Balancing these oppos-
ing goals might prove a complex task,
particularly in the case of edema which
occurs as a result of surgical cancer
treatment.
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