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Summary
VEGF-C and VEGF-D are the two central signal ing molecules that govern the develop-
ment and growth of the lymphatic system. The presence or absence of lymphan-
giogenesis plays a central and sometimes causative role in a variety of diseases.
Therefore, the molecules that govern lymphangiogenesis – especial ly VEGF-C and VEG-
FR-3 – offer the possibil ity of therapeutic intervention.

Although lymphangiogenesis blockade doesn’t exist as an independent therapeutical
concept, several anti-lymphangiogenic drugs are tested at the moment in cl inical trials.
The rational is that by targeting VEGF-C and VEGF-D, the present antiangiogenic treat-
ment would be improved since tumors may deploy the angiogenic forms of VEGF-C
and VEGF-D when VEGF-A-mediated angiogenesis is blocked.

Despite many attempts there has been no breakthough in the pro-angiogenic ther-
apies. Furthermore, pro-lymphangiogenic, VEGF-C- or VEGF-D-based therapies have
practical ly never made it to the cl inical trial phase. At least one cl inical study with VE-
GF-C is now in preparation, namely in combination with lymph node transplantation to
treat postmastectomy edema.

Here, we review the roles that VEGF-C, VEGF-D and their receptors play in diseases that
involve the lymphatic system and we present opportunities to util ize these molecules
to stimulate lymphatic vessel growth to fight lymphedema or to block their growth in
order to inhibit tumor angiogenesis and tumor lymphangiogenesis.
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lymphatic metastasis

Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D
Teil 2: Die Rolle von VEGF-C und VEGF-D bei lymphatischen
Erkrankungen

Zusammenfassung
VEGF-C und VEGF-D sind die beiden zentralen Signalmoleküle, die für die Entwicklung
und das Wachstum des Lymphgefäßsystems verantwortl ich sind. Fehlende oder über-
schiessende Lymphangiogenese spielt in einer Reihe von Krankheiten eine zentrale
und manchmal auch ursächl iche Rol le. Deshalb stel len die die Lymphangiogenese
steuernden Signalmoleküle, insbesondere VEGF-C und VEGF-Rezeptor-3, eine Möglich-
keit zur therapeutischen Intervention dar.

Obwohl Lymphangiogenese-Blockierung nicht als eigenständiges Therapiekonzept
existiert, werden eine ganze Reihe von antilymphangiogenen Wirkstoffen zur Zeit in
kl inischen Versuchen getestet. Man erhofft sich von ihnen eine Verbesserung der ex-
istierenden antiangiogenen Tumortherapie, weil bei der Blockierung von VEGF-A Tu-
more auf die angiogenen Formen von VEGF-C und VEGF-D ausweichen können, um
ihre Versorgung mit Blutgefäßen sicherzustel len.

Trotz vieler Versuche konnte auf der anderen, proangiogenen Seite noch keine Ther-
apie einen entscheidenden Durchbruch vermelden, und prolymphangiogene, auf VE-
GF-C oder VEGF-D basierende Therapien wurden bisher so gut wie nie in kl inischen
Studien untersucht. Zumindest eine kl inische Studie mit VEGF-C befindet sich jetzt al-
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Figure 1 .

Blood and lymphatic vessels are found in

most organs. Shown here are blood and
lymphatic capillaries in the skin of a mouse ear
(Mus musculus). The vasculature is specifically
stained with fluorescent antibodies. Lyve­1
(green) shows the lymphatic capillaries in the
foreground, PECAM­1 (red) the blood capillar­
ies. Due to the intensive LYVE­1 staining, the PE­
CAM­1 staining of the lymphatic capillaries is
not visible. Note the larger diameter of the
lymphatic capillaries. We thank Harri Nurmi for
providing this image.

Endothelial cells are mostly in

the resting phase

During embryonic development,
organ growth goes hand in hand with
vascularization by blood vessels (an-
giogenesis) and lymphatic vessels
(lymphangiogenesis; see Figure 1). Only
a few organs are excluded; e.g. the brain
contains no lymphatic vessels and the
cornea of the eye is completely avascu-
lar. Together with organ growth angio-
genesis and lymphangiogenesis cease in
adulthood, and apart from a few excep-
tions, the endothelial cells of the adult
organism are not actively dividing.
However, a re-entry into the active cell
cycle can be observed during wound
healing [1 ] , in cardiac and skeletal
muscle during athletic training [2] ,
periodically within the hair cycle [3]
and female reproductive organs, and
during placental development [4] .
Common to these angiogenic processes
is, that the endothelial cells exit from
the cell cycle into the resting state after
the physiological angiogenesis target
has been reached. This is in sharp con-
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Figure 2.

Scenario for the roles ofVEGF-C and VEGF-D for tumor angiogenesis and metastasis. (A) The
tumor secretes the primary angiogenesis factor VEGF­A, and thus initiates its own vascularization.
(B) The antiangiogenic effect of the anti­VEGF­A therapy slows or stops tumor growth. In the
following, the compensatory microevolution leads to increased production and activation of
VEGF­C and/or VEGF­D. (C) VEGF­C and/or VEGF­D mediate tumor angiogenesis and tumor
lymphangiogenesis. The disease progresses in form of lymph node metastasis and eventually
distant metastases.
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mor can increase the production of
VEGF-A. Alternatively, it could deploy
a different ligand (e.g. VEGF-C) and/or
an alternative receptor (e.g. VEGF re-
ceptor-3).

VEGF receptor-3, which is ex-
pressed by tumor blood vessels, can be
activated by VEGF-C or VEGF-D. In
addition, in their mature form, VEGF-
C and VEGF-D can activate VEGF re-
ceptor-2 [12, 13] . Other growth factors
such as FGFs [14] , other angiogenic
mechanisms [co-option; 15, 16] and the
mobilization of myeloid cells from the

bone marrow [17] may contribute to
the development of resistance. A future
anti-angiogenic therapy will therefore
need to block several angiogenic factors
and mechanisms at the same time to
prevent the development of resistance.

Hematogenous metastasis

versus lymphatic

Tumors spread either through the
vascular system (hematogenic meta-
stasis) or via the lymphatic vessels
(lymphatic metastasis) . The blood ves-
sel density of tumor is correlated with
hematogenous metastasis [18, 19] and,
not unexpectedly, VEGF-A and VEG-
FR-2 were shown to be prognostic
markers for tumor metastasis [20, 21 ] .

A similar relationship exists bet-
ween VEGF-C/VEGF-D and lymphatic
metastasis. VEGF-C and VEGF-D sti-
mulate the growth of lymphatic vessels
within (intratumoral) and around
(peritumoral) the tumor and accelerate

trast to the uncontrolled, pathological
angiogenesis, which plays an important
and partly causal role in many diseases,
especially during tumor growth.

The role of VEGF-C and VEGF-D

for tumor angiogenesis and

tumor lymphangiogenesis

The dependence of tumor growth
on tumor vascularization has been re-
cognized long ago [5] , and a whole
range of therapeutic concepts has been
based on this dependence. In many ex-
perimental cancer models, the tumors
initially grow without the need for a
blood supply. At a certain tumor size,
the supply of oxygen by diffusion alone
becomes insufficient, and eventually the
tumor cells begin to stimulate blood
vessel growth. This switch from avas-
cular to vascular growth can take place
quite early during tumor development
[6, 7] .

VEGF-A and its associated receptor
VEGFR-2 transmit the main signals for
tumor angiogenesis [8] . Accordingly,
the first clinically available anti-angio-
genesis drug was a monoclonal anti-
body directed against VEGF-A (beva-
cizumab, brand name "Avastin", see
Figure 4). Contrary to initial expecta-
tions, anti-angiogenic therapy appeared
far from universally effective. Some tu-
mors were found to be generally resist-
ant; but also when the anti-angiogenic
therapy is initially successful, the tu-
mors eventually develop resistance [see
Figure 2; 9, 10, 11 ] .

The development of resistance
against VEGF-A-blocking anti-angio-
genic therapy is multifactorial: the tu-

lerdings in Vorbereitung, und zwar in Kombination mit Lymphknoten-Transplantation
für die Therapie des postoperativen Lymphödems.

In diesem Artikel geben wir einen Überbl ick über die Rol le, die VEGF-C, VEGF-D und
ihre Rezeptoren bei Krankheiten des Lymphgefäßsystems spielen und wir präsentier-
en verschiedene Möglichkeiten, diese Moleküle therapeutisch für das Wachstum von
Lymphgefäßen für die Lymphödemtherapie zu nutzen oder sie zu blockieren, um z. B.
die für das Tumorwachstum notwendige Angiogenese und die für die Tumorausbreit-
ung förderl iche Lymphangiogenese zu hemmen.

Schlüsselwörter: VEGF-C, VEGF-D, Lymphangiogenese, Lymphödem, lymphatische
Metastasierung
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Figure 3.

Lymphedema causes and classification. For several types of primary lymphedema, the causative
gene defects have been identified (see Table 1). Globally, most secondary lymphedemas are caused
by parasites. In industrialized countries, however, the main causes are surgery and traumata.
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robust angiogenic response to hypoxia
in coronary heart diseases seems para-
doxical since hypoxia is the main an-
giogenic stimulus. The growth of new,
collateral blood vessels to compensate
for the narrowings is therapeutically
desired. Unfortunately, stimulation of
angiogenesis and arteriogenesis appears
insufficient in most ischemic diseases
[33, 34] .

There has been no shortage of at-
tempts to therapeutically stimulate an-
giogenesis and arteriogenesis [35] . The
most straightforward approach used
VEGF growth factors directly to activ-
ate the VEGF receptors and thus the
endothelial cells. Although some early
attempts to treat cardiovascular dis-
eases with VEGF-A [36] and VEGF-C
[37, 38] looked promising, these stra-
tegies have not matured into useful
therapeutic tools despite of more than a
decade of preclinical and clinical stud-
ies [39, 40] . It is possible that VEGFs
alone are not able to stimulate a clinic-
ally relevant angiogenesis and that ad-
ditional signals from other growth
factors or cytokines are required. An-
other possible explanation for the ulti-
mate failure of direct VEGF growth
factor therapy may be the technological
limitations of the early attempts [41 ] . If
the a concerted action of several pro-
angiogenic signals is needed in order to

provoke a positive response in the pa-
tient, a therapy would be preferable
which aims at an angiogenic master
switch, such as the hypoxia-induced
factor HIF [42] .

Lymphedema and lymphatic

hypo- and aplasia

Tissue swellings due to insufficient
lymphatic drainage are divided into
primary lymphedema, which has here-
ditary causes, and secondary lymph-
edema, which is an acquired disease
| see Figure 3; 43] . Table 1 lists the
hereditary lymphedemas in which the
edema is a dominant or the only symp-
tom. Besides these, there are a number
of inherited diseases in which the
lymphedema is part of a syndrome.
Two of these diseases that are interest-
ing due to the molecular etiology can
also be found in Table 1 . One of these
syndromes is responsible for the most
common form of hereditary lymph-
edema: lymphedema-distichiasis syn-
drome (OMIM 153400). It can be
traced to mutations of the transcription
factor FOXC2, which lead to a mal-
formation of the lymphatic valves, to
abnormal recruitment of smooth
muscle to the lymph capillaries and the
undesirable formation of a basal lamina
for the lymphatic capillary bed [44,
45] .

About 70% of the type I hereditary
lymphedema sufferer have an inhibiting
gene mutation that inactivates the in-
tracellular kinase of the VEGF receptor-
3 [OMIM 153100; 46, 47] and thus
lymphangiogenesis. The disease is
autosomal dominant, because mutant
receptors can dimerize with the re-
maining intact receptors and thereby
render them non-responsive leading to
an overall reduction of lymphangiogen-
ic signaling [48] . For medical research,
it is interesting to note that there is a
breeding line ofmice (the so-called Chy
mice), which also has a mutation in the
VEGF receptor-3 and type I hereditary
lymphedema-like symptoms [49] .

Although all endothelial cells carry
the mutant gene, not all lymphatic ves-

lymphatic metastasis [see Figure 2; 22,
23, 24] . Lymphatic vessels within the
tumor are probably rare and unlikely to
be functional, but have been demon-
strated in several tumors, and could be
- at least in some studies - correlated
with VEGF-C/VEGF-D expression and
the disease progression [25] . Per-
itumoral lymphatics develop around
the tumor, originating from the sur-
rounding lymphatic vasculature [23, 26,
27] . In experimental tumor models in
mice, mostly these peritumoral vessels
appear to be responsible for lymphatic
metastasis [26, 28, 29] . In these scen-
arios, the lymphatic system appears not
only as a passive recipient of egressing
tumor cells, but also as an active ac-
complice. Produced by the tumor, VE-
GF-C causes the lymph system to
collaborate in the processes of lymph
node metastasis by causing an enlarge-
ment of the regional lymph nodes, an
increased lymph flow and increased
lymph node lymphangiogenesis within
the sentinel nodes [see Figure 2; 30, 31 ,
32] .

Pro-angiogenic therapy

Excessive or insufficient angiogen-
esis or lymphangiogenesis are charac-
teristic of certain diseases. The lack of a
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Table 1 .

Hereditary lymphedemas and selected syndromes with a consistent lymphedema component. OMIM, Online Mendelian Inheritance in Man; ad,
autosomal dominant; ar, autosomal recessive; *, not yet assigned; LEC, lymphatic endothelial cell
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mutation was also identified in zebra-
fish and characterized in detail [56] .

However, the overall most common
causes of lymphedema are not of genet-
ic, but of infectious and traumatic
nature. In tropical countries, filariasis
causes the majority of lymphedema
cases. Filarial nematodes are parasitic
infections with roundworms such as
Wuchereria bancrofti or Brugia malayi,
whose untreated final stages are known
as elephantiasis. The transmission of
the pathogen happens by mosquito bite,
and the lymphatic vessels serve as con-
duit and habitat for the parasite [57] .
The resulting enlargement of the lymph
vessels seems to be directly controlled
by parasitic antigens and indirectly via
VEGF-C [58, 59] .

Pro-lymphangiogenesis

therapy

In industrialized countries, iatro-
genic postoperative lymphedema is
probably the most common type of
lymphedema, particularly lymphedema
following the evacuation of lymph
nodes associated with cancer opera-

tions. The extent to which the surgical
procedure itself is responsible for the
edema is unknown, but it is noteworthy
that postoperative edema may emerge
after the acute phase edema has re-
solved even years after surgery [60, 61 ] .
Therapeutically, lymph node trans-
plantation seems to become the treat-
ment of choice [62] . In experimental
models, the integration of transplanted
lymph nodes into the regional lymph
system could be improved by VEGF-C
treatment [63, 64] . Based on these find-
ings, a clinical study is being planned to
test the combined therapy of lymph
node transplantation with Lymfactin™
(the biopharmaceutical brand name for
VEGF-C; http://www.contractpharma.c
om/contents/view_breaking-news/2012
-10-15/ark-to-make-lymfactin-for-laur
antis) . A similarly high dose pro-
lymphangiogenesis gene therapy with
VEGF-C was successful in the Chy
mouse model of Nonne-Milroy lymph-
edema and in other experimental mod-
els, where it could stimulate the growth
of lymphatic vessels [49, 65] . Whether
and to what extent these results can be
transferred to the hereditary lymph-
edema of humans is unclear due to the

sels and body parts are equally affected.
Strongly hypoplastic or aplastic lymph
capillaries are mainly found in the peri-
phery [50] . A possible explanation
could be the increased need for drain-
age in the extremities, where more
lymph is produced due to a higher hy-
drostatic pressure in the blood vascu-
lature. Against this explanation argues
the fact that in mice (where hydrostatic
pressure differences are negligible) the
edema prefers as well the extremities
[49] . Possibly, different lymphatic
structures might exhibit a differential
dependency on VEGF-C signaling.

A very rare form of hereditary
lymphedema, the Hennekam Syndrome
(HS; OMIM 235510), can be caused by
mutations in the CCBE1 gene [51 ] . VE-
GF-C-induced lymphangiogenesis is
impaired in HS [52, 53] . A disease
phenotype similar to HS can be in-
duced in mice by blocking the signaling
of VEGF receptor-3 [54] . Possibly sim-
ilarly rare and so far only described
once is a secretion-inhibiting mutation
in the coding sequence of the VEGF-C
gene, which results in a clinical picture
very similar to type I hereditary lymph-
edema [55] . A functionally analogous

http://www.contractpharma.com/contents/view_breaking-news/2012-10-15/ark-to-make-lymfactin-for-laurantis
http://www.omim.org/entry/153100
http://www.omim.org/entry/611944
http://www.omim.org/entry/613480
http://www.omim.org/entry/153200
http://www.omim.org/entry/153400
http://www.omim.org/entry/235510
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cells, which in turn produce a number
of growth factors, not in the least VE-
GF-C itself [70] . Therefore, it is not
surprising that in addition to angiogen-
esis, lymphangiogenesis is often char-
acteristic for chronic inflammatory
situations. In autoimmune diseases
such as type 1 diabetes [71 ] and other
conditions associated with inflammat-
ory features, such as in chronic respir-
atory diseases [72, 73] , psoriasis [74] ,
and possibly obesity [75] , pathological
lymphangiogenesis can be observed.
Although lymphangiogenesis is not
causally involved in the pathogenesis of
these diseases, an anti-lymphangiogenic
therapy could prove useful because the
lymphatic vessels are the preferred trails
of disease-promoting immune cells
[24] .

Tumors of the endothelium

and vascular malformations

Hemangiomas

Hemangioma is one of the more
common tumors that develop from un-
controlled endothelial cell proliferation.
Hemangiomas require treatment only
in cases in which the tumor is a larger
cosmetic problem or presents a func-
tional risk to the surrounding organs
[76] . Hemangiomas regress almost
always spontaneously within a few
years. It is unknown, why hemangio-
mas arise, but it is believed that hypox-
ia-induced changes in the expression of
VEGFs and VEGF receptors are in-
volved in causing the uncontrolled an-
giogenesis [77, 78] .

Lymphangiomas

Lymphangiomas are vascular mal-
formations of the lymphatic vessels.
They seem to arise exclusively sporad-
ically and thus differ from capillary and
venous malformations, of which both
sporadic and inherited variants are
known [79] . However, the genetic com-
ponent of venous malformations was
not found in the VEGF-receptor genes,
but in the genes of the Tie receptors,
which are also specific for endothelail
cells [80, 81 ] .

Malignant endothelial cell tumors

In contrast to epithelial tumors
(carcinomas), the tumors that develop
from endothelial cells are usually be-
nign. However, hemangiosarcomas and
lymphangiosarcomas are rare, malig-
nant endothelial cell tumors. It is not
clear how exactly these tumors develop,
but it is interesting that lymphangiosar-
coma occurs as rare complication of
postmastectomy edema [82] .

A more frequently occurring tu-
mor, whose origin is suspected in the
reprogramming of lymphatic endo-
thelial cells by herpes virus-8, is Ka-
posi's sarcoma [83] .

Figure 4.

Drugs, that act on the signal transduction of VEGFs. Biopharmaceuticals and tyrosie kinase
inhibitors with marketing approval in blue, in clinical trials in black, in preclinical testing in red. All
pharmaceuticals in this figure block signal transduction and act anti­angiogenic and/or anti­
lymphangiogenic. The only pro­lymphangiogenic biological drug is Lymfactin™ (which is
identical with VEGF­C).

REVIEW ARTICLES

molecular differences between humans
and mice (see Figure 5 in part 1 of this
article). However, in this regard, clinical
trials would be simplified considerably
if the Phase I study of Lymfactin™ suc-
cessfully completed. In this regard, it is
of interest that in several recent large
studies, the orthodox procedure to eva-
cuate tumor cell infiltrated sentinel
nodes was not associated with a surviv-
al benefit [66-68] .

Lymphangiogenesis in

inflammatory diseases

Inflammation does not only stimu-
late angiogenesis [69] , but also lymph-
angiogenesis. Blood and lymph vessels
supply the inflammation with immune
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giogenic and prevent the formation of
secondary tumors.

VEGF and VEGF receptor

blocker blockers

Combining traditional cytotoxic
therapy with a blocking VEGF-A by
bevacizumab is now standard medical
care for certain types of cancers [86,
87] . Despite this, the clinical benefit re-
mains limited, which underlines the
complex nature of tumor angiogenesis
and the need to simultaneously block
the various angiogenesis mechanisms,
e.g. VEGF-C-induced angiogenesis.

Therapies directed against VEGF-C
have been tested in preclinical studies.
Although antibodies against VEGF-C
(e. g. VGX-100) have been available for
some time and although preliminary
reports have been presented at confer-
ences (http://www.circadian.com.au/sit
es/default/files/VGX-100%20Poster%2
0Presentation%20at%20EORTC_0.pdf),
no positive results of preclinical tumor
studies with anti-VEGF-C antibodies
have been published in the peer-re-
viewed literature. In contrast, the meta-
stasis in experimental mouse tumor
models could be prevented with the
soluble VEGF receptor-3, which also
targets VEGF-C [84] . Soluble VEGF re-
ceptors bind VEGF growth factors and
thus prevent them from binding and
activating the VEGF receptors on the
cell membrane of endothelial cells.

Soluble variants are available for all
VEGF receptors. For example, the fu-
sion protein consisting of the ligand
binding domain of VEGF receptor-1
and the constant region of immuno-
globulin G (Flt(1-3)IgG) effectively
blocked VEGF-A [88] . The fusion pro-
tein consisting of parts of the VEGF re-
ceptor-1 , VEGF receptor-2 and IgG
(VEGF-A-Trap) is also an anti-an-
giogenic molecule [89] , that was re-
cently approved for the treatment of
wet macular degeneration and oxali-
platin-resistant metastatic colorectal
cancer (http://www.fda.gov/Drugs/Info
rmationOnDrugs/ApprovedDrugs).

Since mature VEGF-C can also bind

Anti-lymphangiogenesis

therapy

Anti-lymphangiogenesis therapy
does not exist as an independent tool in
the treatment of tumors because - un-
like angiogenesis - lymphangiogenesis
is not a prerequisite for tumor growth.
The situation is somewhat different for
metastasis, because anti-lymphan-
giogenesis therapy could play a pre-
ventive function [84] . However, clinical
studies do not exist. Nevertheless, anti-
lymphangiogenesis therapies are used
indirectly in clinical trials. Firstly, be-
cause tumor angiogenesis co-opts the
lymphangiogenic signaling pathways
(especially when the primary angiogen-
ic signaling through VEGF-A and VE-
GFR-2 is therapeutically blocked), and
secondly, because the anti-angiogenic
tyrosine kinase inhibitors have also an
effect on the lymphangiogenic VEGFR-
3. Important drugs that target VEGFs
and VEGF receptors are shown in Fig-
ure 4.

Tyrosine kinase inhibitors

Receptor tyrosine kinase inhibitors
are generally analogues of adenosine
triphosphate (ATP). A number of them
(among others sorafenib, sunitinib and
pazopanib) inhibit the enzymatic activ-
ity of the intracellular tyrosine kinase
domain of the VEGF receptors [85] . In
addition to the VEGF receptors, these
drugs do inhibit to a variable degree
other kinases that are not involved in
angiogenesis or lymphangiogenesis,
which is a major cause of their side ef-
fects.

Clinical trials with the so-called
second-generation VEGF receptor tyr-
osine kinase inhibitors (Tivozanib, Ax-
itinib and Cediranib) showed that they
act still anti-angiogenic despite having
reduced side effects [85] . Due to the
high homology within the VEGF re-
ceptor family, also these new RTK in-
hibitors do not inhibit the angiogenic
VEGFR-2 without affecting the lymph-
angiogenic VEGFR-3. Therefore, it is
conceivable that therapies with these
inhibitors could also act anti-lymphan-
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the VEGF receptor-2, a soluble VEGF
receptor-2 might also inhibit lymphan-
giogenesis. An endogenous soluble
splice variant of VEGF receptor-2 ap-
pears to act in the same way as a
lymphangiogenesis repressor [90] as the
soluble splice variant ofVEGF receptor-
1 acts as endogenous angiogenesis in-
hibitors [91 ] .

Whether therapies directed against
VEGF-C trials will be successful in
clinical as independent anti-angiogen-
esis drugs is questionable, because for
the tumor VEGF-C is likely only a re-
serve factor to fall back on if the
primary angiogenesis factor VEGF-A is
therapeutically blocked. In light of this
hypothesis, only a combined block of
VEGF-A and VEGF-C seems reason-
able. The only current clinical study
relevant for this question therefore in-
vestigates the combination therapy of a
monoclonal antibody against VEGF-C
(VGX-100) with bevacizumab (http://
clinicaltrials.gov). That the elimination
of multiple angiogenic pathways is
promising, has already been shown in
preclinical studies by simultaneously
blocking VEGF receptor-2 and VEGF
receptor-3 [12] . The same VGX-100
antibody that is directed against VEGF-
C, showed also efficacy in the treatment
of dry eye disease (keratoconjunctivitis
sicca) [92] .

Theoretically, blocking a receptor
that can bind multiple ligands should
be more effective in preventing its ac-
tivation than blocking any individual
ligand. Therefore, it is surprising that
no antibodies against VEGF receptors
are found among the approved anti-an-
giogenesis drugs. Activation of VEGF
receptors requires first the binding of
the ligand and thereafter the dimeriza-
tion of the receptor. Therefore, the re-
ceptor activation can be blocked either
at the level of ligand binding or at the
level of receptor dimerization.

The antibodies against VEGF re-
ceptors that are currently in clinical
studies prevent the first step: the bind-
ing of the ligand [93, 94] . Antibodies
that block the second step (receptor di-
merization) have the advantage that
they do not have to compete with the
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sued.

Because pro- and anti-angiogenic
therapies aim at contradictory object-
ives, there may also be limits their ap-
plicability. At least theoretically, it could
be, that a pro-angiogenic therapy of
coronary heart disease or a pro-lymph-
angiogenic therapy of lymphedema in-
creases the risk of cancer. Vice-versa, a
long-term cancer therapy with antian-
giogenic or anti-lymphangiogenic drugs
could affect the blood or lymphatic sys-
tem.
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