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Summary
VEGF-C and VEGF-D are the two central signal ing molecules that stimulate the devel-
opment and the growth of lymphatic system. Both belong to the VEGF protein family
which plays important roles in the growth of blood vessels (angiogenesis) and lymph-
atic vessels (lymphangiogenesis). In mammals the VEGF family comprises five mem-
bers: VEGF, PlGF, VEGF-B, VEGF-C and VEGF-D. The family was named after its first
discovered member VEGF (“Vascular Endothel ial Growth Factor”). VEGF-C and VEGF-D
form functional ly and structural ly a subgroup within this family. They differ from the
other VEGFs by their pecul iar biosynthesis: they are produced as inactive precursors
and need to be activated by proteolytic removal of their long N- and C-terminal
propeptides. Unl ike the other VEGFs, VEGF-C and VEGF-D are direct stimulators of
lymphatic growth. They exert their lymphangiogenic function via VEGF receptor-3,
which is expressed in the adult organism almost exclusively on lymphatic endothel ial
cel ls. In this review we give an overview of the VEGF protein family and their receptors
with the emphasis on the lymphangiogenic VEGF-C and VEGF-D, and we discuss their
biosynthesis and their role in embryonic lymphangiogenesis.
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Die lymphangiogenen Wachstumsfaktoren VEGF-C und VEGF-D
Teil 1 : Grundlagen und Embryonalentwicklung

Zusammenfassung
VEGF-C und VEGF-D sind die zwei zentralen Signalmoleküle, die für die Ent-wicklung
und das Wachstum des Lymphgefäßsystems verantwortl ich sind. Beide gehören zur
VEGF-Proteinfamil ie, deren Mitgl ieder hauptsächl ich im Wachstum von Blutgefässen
(Angiogenese) und Lymphgefässen (Lymphangiogenese) ihre Funktionen haben. Die
VEGF-Famil ie umfasst in Säugetieren fünf Mitgl ieder: VEGF, PlGF, VEGF-B, VEGF-C und
VEGF-D. Benannt wurde diese Famil ie nach ihrem zuerst entdeckten Mitgl ied VEGF
(„Vascular Endothel ial Growth Factor”). VEGF-C und VEGF-D bilden funktionel l und
strukturel l eine Untergruppe innerhalb der VEGF-Famil ie. Sie unterscheiden sich von
den anderen VEGFs durch ihre besondere Biosynthese: sie werden als inaktive Vorgän-
germoleküle produziert, für deren Aktivierung ihre langen N- und C-terminalen
Propeptide enzymatisch abgespalten werden müssen. Im Gegensatz zu den anderen
VEGFs sind VEGF-C und VEGF-D direkte Stimulatoren für das Wachstum lymphatischer
Gefäße. Ihre lymphangiogene Wirkung enfalten VEGF-C und VEGF-D über den VEGF-
Rezeptor-3 (VEGFR-3), der im erwachsenen Organismus fast nur auf den Endothelzel-
len der Lymphvaskulatur zu finden ist. In diesem Artikel geben wir einen Überbl ick
über die VEGF-Proteinfamil ie und deren Rezeptoren mit dem Schwerpunkt auf den
lymphangiogenen Mitgl iedern VEGF-C und VEGF-D, über ihre Biosynthese und ihre
Rol le in der Embryonalentwicklung.
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The VEGF family of proteins

and their receptors

VEGF receptors

Endothelial cells form the inner-
most layer of all blood and lymphatic
vessels, and these cells play the central
role during vascular growth. Vascular
growth requires the interaction of vari-
ous growth factors and receptors.
Among those, the VEGF protein family
with their receptors is dominant with
VEGF receptor-2 (VEGFR-2) for the
growth of blood vessels and VEGFR-3
for the growth of lymphatic vessels.
Other important molecules that are not
covered in this review are (among oth-
ers) the Tie receptors and their angio-
poietin ligands, which play complex,
partly context-dependent roles in the
preservation, stabilization and remod-
eling of blood vessels [1 , 2] , the PDGF
receptors with their PDGF ligands,
which are necessary for the stabilization
of the vessel wall by pericytes and vas-
cular smooth muscle [3] , and the Eph
receptors with their ephrin ligands,
which are involved in the determina-
tion of the venous and arterial identity
of blood vessels [4] .

The signaling of the VEGF mo-
lecules affects the growth and function
of endothelial cells via VEGF receptors.
Only endothelial cells express VEGF
receptors [the few exceptions are listed
in the supplement of the review by Ols-
son et al.; 5] . The VEGF receptors are
tyrosine kinase receptors. Their N-ter-
minal domain protrudes from the cell
membrane into the extracellular space
and has an affinity for one or more spe-
cific VEGFs (binding partners or lig-
ands). The C-terminal part executes its
catalytic function in the cytoplasm,
when the extracellular portion becomes
occupied with its binding partner (see
Figure 1). In case of the VEGF recept-
ors, this activation of the catalytic func-
tion is achieved because each VEGF
molecule features two binding sites for
its receptor (bivalency). The two bind-
ing sites of the VEGF molecule bind
two VEGF receptor molecules and
thereby the intracellular, catalytic do-
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Figure 2.

Schematic representation of the VEGF growth factors and VEGF receptors. The
VEGF receptors are transmembrane receptors with an extracellular domain consisting
of seven immunoglobulin (Ig) homology domains and an intracellular split­kinase
domain. The outer three Ig homology domains (shown in different color) are sufficient
to interact with the respective ligands. The VEGFs consist of two individual polypeptide
chains, which are connected by disulfide bridges. Typically, two identical protein chains
connect to form a VEGF molecule (homodimer), but also two different protein chains
can connect to form a so­called heterodimer (e.g. PlGF and VEGF­A). Similarly, two
different VEGF receptors can ligate to form heterodimers and such a ligation can be
mediated by a ligand; for example, VEGF­C can ligate VEGF receptor­2 and VEGF
receptor­3 resulting in a VEGFR­2/3 heterodimer. Such receptor heterodimers may have
special functions [64, 86]. Among the VEGF receptors, VEGF receptor­3 is exceptional, as
it is the only one whose extracellular domain is proteolytically cleaved [87].

Figure 1 .

Model of the activation of tyrosine kinase

receptors by a bivalent ligand. Simultaneous
binding of a ligand (e.g. VEGF­C, shown in
blue) to the extracellular domains of two
receptor molecules (e.g. VEGFR­3, shown in
gray black) positions the intracellular catalytic
domains (shown in red) in such a way that
they can phosphorylate each other. This
changes the three­dimensional structure of
the intracellular receptor part and exposes
affinities to other intracellular signaling
molecules (second messengers) that are
activated by docking to the phosphorylated
tyrosine residues. Such activations propagate
in a cascade fashion until the signal enters the
cell nucleus where it modifies the trans­
criptional activity of target genes. The
intracellular signaling of VEGF receptors is
reviewed in detail by Olsson et al. [5].

mains of the receptors are positioned in
such a way that they activate each other
through the transfer of phosphate
groups from ATP to specific tyrosine
residues. This changes the threedimen-
sional structure of the intracellular do-
main and this change allows interaction
with and activation of other intracellu-
lar signaling molecules, which ulti-
mately causes a change in gene expres-
sion and thus a change of cell behavior
[6] . Apart from the VEGF receptors,
most VEGFs bind to additional cell
membrane-bound molecules (so-called
co-receptors), for example neuropilins
[7] . However, these interactions are ty-
pically of lower affinity.

The VEGF growth factors

Mammals have five different VE-
GFs: VEGF-A, VEGF-B, VEGF-C, VE-
GF-D and PlGF (placental growth
factor).

VEGF-A. VEGF-A was the first
VEGF growth factor that was dis-
covered and it is often simply referred
to as VEGF. In the early literature it is
also known as vascular permeability
factor (VPF) because of its property to
increase the permeability of blood ves-
sels [8] . Its main function is in the
stimulation of blood vessel growth (an-
giogenesis) . VEGF-A is a medically rel-
evant drug target due its enabling role

for tumor growth. Blocking blood ves-
sel growth by the anti-VEGF-A anti-
body bevacizumab ("Avastin") showed
already more than 10 years ago that
anti-angiogenesis represents a useful
addition to the therapeutic options
against certain forms of cancer. VEGF-
A has two different receptors on en-
dothelial cells: VEGF receptor-1 (VEG-
FR-1) and VEGFR-2.

VEGF-B and PlGF. In contrast to
VEGF-A, VEGF-B and PlGF are only
able to interact with VEGFR-1 . Almost
all the important functions of VEGF-A
are mediated via the signal transduc-
tion of VEGFR-2; and accordingly,
VEGF-B and PlGF are only weakly an-
giogenic. VEGFR-1 , in contrast to
VEGFR-2, has even an inhibitory func-
tion by binding the potently angiogenic
VEGF-A, but not triggering a similarly
strong reaction as VEGFR-2 does [9-
13] . VEGF-B and PlGF, however, seem
to have specific functions for angiogen-
esis of the heart muscle [14, 15] , for
certain pathological processes [16] and
fatty acid metabolism [17] .

VEGF-C and VEGF-D. VEGF-C
and VEGF-D can both interact with
VEGFR-2 and VEGFR-3. Their main
task is the stimulation of the growth of
lymphatic vessels (lymphangiogenesis) .
VEGF-C was discovered in 1996 as a
binding partner of VEGF receptor-3,
for which no ligand had been found yet
[18] . A little later, murine VEGF-C was
described independently, but the au-
thors named the molecule VRP [VEGF-
related protein; 19] . Soon thereafter, the
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specific lymphangiogenic properties of
VEGF-C were demonstrated in various
animal models [20, 21 ] . Because in
some of these models, the angiogenic
properties of VEGF-C became apparent
[21-23] , a VEGF-C mutant was de-
veloped that interacts exclusively with
VEGF receptor-3 and thus no longer
has angiogenic potency [the so-called
C156S VEGF-C mutant; 24] . With this
mutant, the lymphangiogenic function
ofVEGF-C could be separated from the
angiogenic function and independently
studied.

VEGF-D is the second specific
lymphangiogenic growth factor. It was
identified and described independently
by three different research teams, once
under the acronym FIGF [c-fos-induced
growth factor; 25] and twice as VEGF-
D [26, 27] .

VEGF-E and VEGF-F. In addition
to these five mammalian VEGFs there
are VEGF-E and VEGF-F. VEGF-E is
the collective name for proteins closely
related to the VEGFs that were detected
in the genome of certain pathogenic
viruses and that are involved in the dis-
ease etiology [28-32] . The collective
term VEGF-F denotes homologous
proteins that have been identified as
accessory components of snake venoms
[33-37] . Their function is probably to
increase the permeability of blood ves-
sels in order to potentiate the effects of
the primary venom components.

The structure ofVEGF

molecules

VEGF family members are mo-
lecules that feature a central domain
homologous to VEGF. This domain is
referred to as VEGF homology domain
(VHD, shown in red in Figure 3). This
homology can be identified at all levels
of the protein structure (from the
amino acid sequence up to the three-
dimensional structure of the protein).
The VHD contains the receptor binding
domain. In addition, most VEGFs fea-
ture accessory domains that further de-
termine the specific properties of
individual VEGFs, e.g. the affinity of
VEGF-A to the co-receptors Neuropil-

in-1 and -2 [38] , or of VEGF-C to the
co-receptor Neuropilin-2 [39, 40] .

All of the VEGF family members
are composed of two polypeptide
chains (dimeric proteins). During the
biosynthesis of the polypeptide chains
they align in an antiparallel fashion
with a hydrophobic contact area facing
each other, and become covalently
linked with two disulfide bridges. The
resulting shape resembles roughly a
flattened ellipsoid. At each end of this
ellipsoid, there is one epitope that can
bind a matching VEGF receptor. Both
epitopes are composites of parts from
both polypeptide chains. This compos-
ite nature of the receptor binding epi-
topes explains why monomeric VEGF
(VEGF with only one polypeptide
chain) is biologically inactive: it cannot
ligate two receptors [41 ] .

Alternative splicing

Like almost all secreted proteins, the
VEGFs are glycoproteins. Most of them

are produced in different forms. The
diversity is produced either by alternat-
ive splicing or by posttranslational
modification of the protein (e.g. by
proteolytic cleavage). Through altern-
ative splicing of the VEGF-A mRNA, a
variety of different VEGF-A isoforms
are produced that differ primarily in
their affinity for heparan sulfate pro-
teoglycans (HSPGs), which occur
primarily on cell surfaces and in the ex-
tracellular matrix [see Figure 3; 12, 41 ] .
The interaction with HSPGs immobil-
izes the so-called "heparin-binding"
VEGF-A isoforms. Thus a concentra-
tion gradient can form, which can be
used by blood vessels for orientation
and directed growth [42, 43] .

The activation ofVEGF-C and

VEGF-D

Splice isoforms have been also de-
scribed for VEGF-C and VEGF-D, but
their functions are unknown [19] . VE-
GF-C and VEGF-D get their diversity

Figure 3.

Schematic representation of the domain structure of selected members of the VEGF and

PDGF protein families. The PDGF family is so closely related to the VEGF family that the two are
sometimes grouped together as PDGF/VEGF family. In fact, in the invertebrates, the two families
cannot be distinguished from each other and are referred to as PVFs [PDGF/VEGF­like growth
factors; 85]. The comparison of human VEGFs with these PVFs allows to draw conclusions about
the structure of ancestral PDGF/VEGF­like molecules and these appear more similar to today’s
lymphangiogenic VEGF­C and VEGF­D than to the haemangiogenic VEGF­A. The PVFs of the fruit
fly Drosophila function in the migration of hemocytes and the PVFs of the jellyfish Podocoryne

carnea plays a role in the formation of the tentacles and the gastrointestinal vascular apparatus.
The function of the nematode C. elegans' PVF (PVF­1) is unknown.
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mainly by enzymatic (proteolytic)
cleavage of their precursor molecules
(see Figure 4).

The affinity of the VEGF-C pre-
cursor molecules for the VEGF recept-
or-3 is modest and its affinity is even
lower for VEGF receptor-2. With in-
creasing processing, the affinities for
both receptors increase, and fully pro-
cessed mature VEGF-C and VEGF-D
have in addition to their lymphan-
giogenic also strong angiogenic poten-
cies [44-47] . How the activation of
VEGF-C and VEGF-D is controlled in-
vivo, is not precisely known. It is be-
lieved that the availability and activity
of specific proteases is central to this
control: The activation of VEGF-C and
VEGF-D by specific proteases would
therefore be one of the crucial factors
determining whether VEGF-C and VE-
GF-D act as lymphangiogenic or angio-
genic effectors. In addition to
regulating the activity of VEGF-C, the
C-terminal propeptides of VEGF-C and
VEGF-D have other functions: similar
to the heparin-binding domain of VE-
GF-A, they endow the molecules with
heparin affinity [48] . It is also interest-
ing that the C-terminal propeptide
contains a repetitive arrangement of
cysteine residues, which is otherwise
almost exclusively known from the
salivary proteins of silk weaving mos-
quito larvae of the genus Chironomus;
hence the name "Silk homology do-
main" for the C-terminal propeptide
[18, 49] . However, the whys and hows
of this similarity are unknown.

Vasculogenesis or angiogen-

esis?

Two different mechanisms can lead
to the formation of new blood vessels:
vasculogenesis and angiogenesis. Vas-
culogenesis is the differentiation of
progenitor cells (angioblasts or lymph-
angioblasts) into endothelial cells and
the formation of a primitive vascular
network while angiogenesis refers to
the growth of new blood vessels from
pre-existing vessels. Vasculogenesis
plays mainly a role during the early de-
velopment of the vascular system,

whereas angiogenesis is the main
mechanism for vascular growth during
the later phases of embryonic develop-
ment and in the adult organism.

In mammals, the lymphatic system
forms by angiogenic processes emanat-
ing from the large veins [50, 51 ] . The
initially disputed fact that also vasculo-
genesis can contribute to the develop-
ment of the lymphatic system was
shown e.g. in birds [52] and frogs [53] .

To form new vessels, endothelial
cells have to execute a complex pro-
gram: they need to switch from their
resting state back into active cell cyc-
ling. One of the main triggers of cell
cycle re-entry for blood vessel en-
dothelial cells is the lack of oxygen
(hypoxia), which necessarily results
from avascular growth. Molecular oxy-
gen sensors activate a genetic switch
that activates the angiogenesis program

Figure 4.

The enzymatic maturation of VEGF-C. VEGF­C is produced as a precursor molecule. Its signal
peptide is removed during translocation into the endoplasmic reticulum (ER). In the ER, the protein
folding takes place. On the way through the Golgi apparatus, the second enzymatic cleavage of
the VEGF­C polypeptide chain takes place. After this, the two halves of the protein are still held
together by disulfide bridges. This intermediate form (pro­VEGF­C) is secreted and subsequently,
the mature, active forms are generated by two alternative, extracellular proteolytic cleavages.
The second intracellular proteolytic cleavage is mediated by the enzymes furin, PC5 or PC7 [88].
The enzymes that catalyze the following activating extracellular proteolytic cleavages are not well
defined. Cleavage by plasmin can give rise to VEGF­C forms which are similar or identical to the
mature VEGF­C [89], and VEGF­C activation by plasmin seems therefore important for certain
situations such as wound healing [90, 91]. However, it is questionable whether plasmin is the
physiologically relevant enzyme for VEGF­C activation during physiological expansion of the
lymphatic system.
Depending on the cell type, two different mature forms of VEGF­C are produced. 293 cells produce
a form that is about 9 amino acid residues shorter than the form produced by PC­3 cells [44]. It is
unknown, whether these two forms differ in function; both bind and activate VEGF receptor­2 and
VEGF receptor­3. It is also unknown, whether the 21­kDa major, mature form is produced by
processing of the 23­kDa minor, mature form or whether both mature forms are generated
directly from pro­VEGF­C by independent proteolytic processing.
On the right, a typical band pattern is shown, which can be observed after electrophoretic
separation of VEGF­C which was expressed from a full­length cDNA. The asterisk marks a minor
43­kDa form [44] and the double asterisk the N­terminal propeptide.
The enzymatic maturation of VEGF­D occurs analogous to that of VEGF­C [45]. However, there is a
critical difference between the two different mature forms of VEGF­D: the shorter of the two has
lost its affinity for VEGF receptor­3, and is thus only angiogenic and not anymore lymphangio­
genic [92].
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[54] . The triggers for the expansion of
the lymphatic system are less well
known, but the interstitial pressure
seems to play an important role for em-
bryonic lymphangiogenesis [55] and
the inflammatory status for pathologic
lymphangiogenesis [56] .

Differences between the blood

and lymphatic system

The pressure within the blood vessel
system leads to leakage of blood
plasma, which thereby becomes tissue
fluid. The main function of the lymph-
atic vessels is to return this excess tissue
fluid back into the blood circulation.
After uptake by the lymphatics, the tis-
sue fluid becomes lymph fluid. On its
way back into the blood vessel system,
the lymph passes through the lymph
nodes, which are base stations of the
immune system. In the lymph nodes,
immune cells which specifically recog-
nized antigens, mature and multiply.
Another function of the lymphatic ves-
sels is limited to the colon: the uptake
and transport of dietary fats with long
chain fatty acids and fat-soluble vitam-
ins [57] .

Blood vessels and lymphatic vessels
are constructed differently. Blood en-
dothelial cells are connected to each
other via tight junctions and adherens
junctions and have a continuous base-
ment membrane on their tissue-facing
(basolateral) side. In contrast, lymphat-
ic endothelial cells are only loosely con-
nected by overlaps, and their basement
membrane is incomplete. They are con-

nected to the underlying tissue by elast-
ic fibers (anchoring filaments). These
fibers mechanically open the overlaps at
elevated tissue pressure and thus ensure
the flow of tissue fluid into the lymph-
vascular lumen [58-60] .

Blood and lymphatic endothelium
also differ in the expression of various
markers: both blood and lymphatic en-
dothelial cells express the general en-
dothelial marker PECAM-1 (platelet
endothelial cell adhesion molecule 1),
but they express a different set of VEGF
receptors: blood endothelial cells ex-
press VEGFR-1 and -2, while lymphatic
endothelial cells express VEGFR-2 and
-3. Fenestrated endothelium [61] , high
endothelial venules [HEVs; 62, 63] and
the blood vessels of tumors [64] are ex-
ceptions in that they do express the
lymphatic marker VEGF receptor-3.

The mechanisms of the directional
growth are similar for blood vessels and
nerve cell axons [65] : a specialized cell
on the tip of the vascular sprout (tip
cell) determines the direction of growth
of subsequent cells (stalk cells) by ex-
tending filopodia that sense growth
factor concentration gradients [66-68] .

VEGF-C and VEGF-D in em-

bryonic development

VEGF-C and VEGF-D have two re-
ceptors: VEGFR-2 and VEGFR-3. VE-
GFR-2 is the primary receptor on
endothelial cells of blood vessels (BECs)
and stimulates their growth, while VE-
GFR-3 exerts the same function on
lymphatic endothelial cells (LECs). Ac-

cordingly, VEGF-C and VEGF-D can
act both as angiogenic and lymphan-
giogenic growth factors. VEGFR-3 was
discovered before VEGF-C and VE-
GF-D and therefore, VEGFR-3 was for
some time an "orphan receptor", i.e. a
receptor without known binding part-
ners (ligands). However, soon after the
discovery of VEGFR-3, the specific ex-
pression pattern of VEGFR-3 suggested,
that its function was closely related to
the lymphatic system. In the early
stages of embryonic development all
endothelial cells express VEGFR-3, but
with advancing age, its expression be-
comes more and more restricted to
lymphatic endothelial cells [63] . Finally
VEGFR-3 expression is so specific for
lymphatic endothelial cells, that it can
be used as a marker for identification
[69] .

Genetically engineered mice that do
not express VEGFR-3, die between the
9th and 10th day of embryonic devel-
opment (E9.5) from failures in the or-
ganization and maturation of blood
vessels [70] . This confirmed the essen-
tial role of VEGFR-3 in the develop-
ment of the cardiovascular system,
since at this time, the development of
the lymphatic system has not started
yet.

Mice that not express the VEGFR-3
ligand VEGF-C die about three days
later (E12.5) due to generalized edema.
In these mice, the lymphatic system
does not develop [71 ] .

Interestingly, neither the develop-
ment of the blood vascular system nor
of the lymphatic vascular system is af-

Figure 5.

Major molecular regulators of lymphangiogenesis differ between mice and

humans. Mouse VEGF­D cannot activate mouse VEGF receptor­2 and mice have
no second short splice isoform of VEGF receptor­3. The function of the short splice
isoform is unknown. The latter difference is due to a retroviral integration that is
specific to humans (or at least higher primates). For these reasons, it is unclear to
what extent experimental knowledge about the lymphatic vasculature and its
diseases is applicable to humans, when it was gained from the common model
organisms [82].
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the two isoforms differ in the signals,
which are generated upon stimulation
with VEGF-C [83, 84] .

The second part of this review will
focus on the roles that VEGF-C and
VEGF-D play in various diseases that
involve the lymphatic system. For some
of these diseases mouse models exist.
However, due to the above mentioned
differences between mice and humans,
one should be careful when extrapolat-
ing from preclinical studies in animal
models to clinical trials with human
patients.

fected by the lack of the second lymph-
angiogenic growth factor VEGF-D [72] .
The absence of both VEGFR-3 ligands
(VEGF-C and VEGF-D) during em-
bryonic development does not lead to
the same severe disorders in the devel-
opment of the vascular system as the
absence of VEGF receptor-3 [73] .
Therefore, there might be yet unknown
ligands for VEGF receptor-3. Alternat-
ively, VEGFR-3 might be activated in-
dependently of a ligand [74, 75] .

A molecule that synergizes with
VEGF-C and which is required for the
development of the lymphatic system
and lymphangiogenesis in general is
CCBE1 (collagen and calcium binding
EGF domains 1 protein). The blockade
of lymphatic development appears in
CCBE1-deficient and VEGF-C-defi-
cient mice around the same time and is
phenotypically very similar. However, it
is unclear what exact role CCBE1 plays
for the lymphatic system [76-78] .
Mutations in the human CCBE1 gene
can be responsible for Hennekam syn-
drome, a rare genetic disease whose
main symptoms include lymphedema
and lymphangiectasia of the intestine
[79] .

Differences between mice and

humans

Because we owe a considerable part
of our knowledge about the molecular
mechanisms of lymphangiogenesis to
laboratory mice, it is necessary to men-
tion two important differences between
mice and humans with respect to the
VEGF-C/VEGF-D/VEGF receptor-3
signaling pathway (depicted in Figure
5): While mature human VEGF-D can
activate the angiogenic receptor
VEGFR-2, this is not the case for mouse
VEGF-D [80] . It is therefore believed
that VEGF-D could have a different
function for mice and humans. Fur-
thermore, there are two splice variants
of human VEGF receptor-3 [a short
and a long isoform; 81 ] , whereas in
mice, only one isoform can be detected.
The appearance of two VEGFR-3 splice
variants can be attributed to a retroviral
insertion into the FLT4 gene [82] , and
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