Biblio

Export 23 results:
Author Title [ Type(Desc)] Year
Filters: First Letter Of Last Name is R  [Clear All Filters]
Journal Article
Rauniyar K, Akhondzadeh S, Gąciarz A, Künnapuu J, Jeltsch M. Bioactive VEGF-C from E. coli. Scientific Reports [Internet]. 2022;12(1). https://www.nature.com/articles/s41598-022-22960-0PDF icon Rauniyar et al. - 2022 - Bioactive VEGF-C from E. coli (4.19 MB)
Rauniyar K, Jha SK, Jeltsch M. Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Frontiers in Biotechnology and Bioengineering [Internet]. 2018;6. https://www.frontiersin.org/articles/10.3389/fbioe.2018.00007/fullPDF icon Rauniyar et al. - Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels (4.42 MB)
Mavali-Zadeh A, Gatto E, Lettieri R, Bokharaie B, Caravella A, D'Ottavi C, et al.. Biomass-derived Lignin Nanoparticles for the Sustained Delivery of Vascular Endothelial Growth Factor-C. Molecular Pharmaceutics [Internet]. Submitted;. https://doi.org/10.1101/2025.04.23.649697PDF icon Preprint (8.34 MB)
Krebs R, Tikkanen JM, Ropponen JO, Jeltsch M, Jokinen JJ, Ylä-Herttuala S, et al.. Critical role of VEGF-C/VEGFR-3 signaling in innate and adaptive immune responses in experimental obliterative bronchiolitis. Am J Pathol. 2012;181(5):1607-20.
Jha SK, Rauniyar K, Kärpänen T, Leppänen V-M, Brouillard P, Vikkula M, et al.. Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Scientific Reports [Internet]. 2017;7(1):4916. https://www.nature.com/articles/s41598-017-04982-1
Rauniyar K, Bokharaie H, Jeltsch M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis [Internet]. 2023;26(3):437 - 461. https://link.springer.com/10.1007/s10456-023-09874-9PDF icon Rauniyar et al. - 2023 - Expansion and collapse of VEGF diversity in major clades of the animal kingdom (3.59 MB)
Iqbal S, Andersson S, Nesta E, Pentinmikko N, Kumar A, Jha SK, et al.. Fetal-like reversion in the regenerating intestine is regulated by mesenchymal asporin. Cell Stem Cell [Internet]. 2025;32(4):613 - 626.e8. https://www.sciencedirect.com/science/article/pii/S1934590925000487
Iqbal S, Andersson S, Nesta E, Pentinmikko N, Kumar A, Jha SK, et al.. Fetal-like reversion in the regenerating intestine is regulated by mesenchymal asporin. Cell Stem Cell [Internet]. 2025;32(4):613 - 626.e8. https://www.sciencedirect.com/science/article/pii/S1934590925000487
M Roukens G, Peterson-Maduro J, Padberg Y, Jeltsch M, Leppänen V-M, Bos FL, et al.. Functional Dissection of the CCBE1 Protein: A Crucial Requirement for the Collagen Repeat Domain. Circ Res [Internet]. 2015;116(10):1660-1669. http://circres.ahajournals.org/content/116/10/1660.long
Niemelä A, Giorgi L, Nouri S, Yurttaş B, Rauniyar K, Jeltsch M, et al.. Gliflozins, sucrose and flavonoids are allosteric activators of lecithin-cholesterol acyltransferase. Scientific Reports [Internet]. 2024;14(1):26085. https://www.nature.com/articles/s41598-024-77104-3
Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, et al.. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science (80- ) [Internet]. 1997;276(5317):1423 - 5. http://view.ncbi.nlm.nih.gov/pubmed/9162011PDF icon Michael Jeltsch et al., Science 1997 (293.65 KB)
Hiltunen MO, Laitinen M, Turunen MP, Jeltsch M, Hartikainen J, Rissanen TT, et al.. Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation [Internet]. 2000;102(18):2262 - 8. http://view.ncbi.nlm.nih.gov/pubmed/11056103PDF icon Mikko Hiltunen et al., Circulation 2000 (1.44 MB)
Dashkevich A, Raissadati A, Syrjälä SO, Zarkada G, Keränen MAI, Tuuminen R, et al.. Ischemia-Reperfusion Injury Enhances Lymphatic Endothelial VEGFR3 and Rejection in Cardiac Allografts. American Journal of Transplantation [Internet]. 2015;16(4):1160-1172. http://onlinelibrary.wiley.com/doi/10.1111/ajt.13564/abstract
Jha SK, Rauniyar K, Jeltsch M. Key molecules in lymphatic development, function, and identification. Annals of Anatomy - Anatomischer Anzeiger [Internet]. 2018;219:25 - 34. http://linkinghub.elsevier.com/retrieve/pii/S0940960218300712PDF icon 1-s2.0-S0940960218300712-main.pdf (2.19 MB)
Jha SK, Rauniyar K, Chronowska E, Mattonet K, Maina EW, Koistinen H, et al.. KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D. eLife [Internet]. 2019;8:e44478. https://elifesciences.org/articles/44478PDF icon Jha & Rauniyar et al. 2019 (3.84 MB)
Schaupper MV, Jeltsch M, Rohringer S, Redl H, Holnthoner W. Lymphatic Vessels in Regenerative Medicine and Tissue Engineering. Tissue Engineering Part B [Internet]. 2016;22(5):1-13. http://online.liebertpub.com/doi/10.1089/ten.TEB.2016.0034PDF icon Schaupper et al. Tissue Engineering Part B. Review (postprint manuscript = accepted version after peer review). (697.3 KB)
Schaupper MV, Jeltsch M, Rohringer S, Redl H, Holnthoner W. Lymphatic Vessels in Regenerative Medicine and Tissue Engineering. Tissue Engineering Part B [Internet]. 2016;22(5):1-13. http://online.liebertpub.com/doi/10.1089/ten.TEB.2016.0034PDF icon Schaupper et al. Tissue Engineering Part B. Review (postprint manuscript = accepted version after peer review). (697.3 KB)
Reunanen S, Ghemtio L, Patel JZ, Patel DR, Airavaara K, Yli-Kauhaluoma J, et al.. Targeting Bacterial and Human Levodopa Decarboxylases for Improved Drug Treatment of Parkinson's Disease: Discovery and Characterization of New Inhibitors. European Journal of Pharmaceutical Sciences [Internet]. 2025;:107133. https://authors.elsevier.com/sd/article/S0928-0987(25)00132-0PDF icon Reunanen et al. 2025 - Targeting Bacterial and Human Levodopa Decarboxylases for Improved Drug Treatment of Parkinson’s Disease (1.18 MB)
He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S, et al.. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res [Internet]. 2005;65(11):4739 - 46. http://view.ncbi.nlm.nih.gov/pubmed/15930292PDF icon Yulong He et al., Cancer Research 2005 (1.82 MB)
Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, et al.. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol [Internet]. 2004;5(1):74 - 80. http://view.ncbi.nlm.nih.gov/pubmed/14634646PDF icon Marika Kärkkäinen et al., Nature Immunology 2004 (3.01 MB)PDF icon Marika Kärkkäinen et al., Nature Immunology 2004, supplementary data 1 (1.27 MB)PDF icon Marika Kärkkäinen et al., Nature Immunology 2004, supplementary data 2 (1.23 MB)
Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al.. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol [Internet]. 2003;161(6):1163 - 77. http://view.ncbi.nlm.nih.gov/pubmed/12810700PDF icon Holger Gerhardt et al., The Journal of Biological Chemistry 2003 (2.24 MB)
Krebs R, Tikkanen JM, Ropponen JO, Jeltsch M, Jokinen JJ, Ylä-Herttuala S, et al.. VEGF-C/VEGFR-3 Signaling Regulates Inflammatory Response in Development of Obliterative Airway Disease. Journal of Heart and Lung Transplantation. 2011;30:S118 - S118.